metrics.py 6.68 KB
Newer Older
&'s avatar
& committed
1
import math
&'s avatar
& committed
2
from collections import Iterable
&'s avatar
& committed
3
from pprint import pprint
&'s avatar
& committed
4
5
6
7

import numpy as np
import sacrebleu
import sklearn
Leo Gao's avatar
Leo Gao committed
8
import random
&'s avatar
& committed
9
10
11
12
13
14


def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
15
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
16
17
18
19
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
20
21
22
23
24
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
25
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
26
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
27
28


&'s avatar
& committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def median(arr):
    return arr[len(arr) // 2]


def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

Leo Gao's avatar
Leo Gao committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def perplexity(items):
    return math.exp(-mean(items))


def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
108
109
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
110
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
111
112
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
113
114
115
116
117
118
119
120
121

def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
122
123
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
124
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
125
126
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
127
128
129
130
131
132
133
134
135
136

def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
137
138
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
139
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
140
141
142
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
143
144
145
146
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
147
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
148
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
149
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
150
151
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
152
153
154
155
156
157
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
158
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
159
        refs = list(refs)
&'s avatar
& committed
160
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
161
        refs = [[ref] for ref in refs]
&'s avatar
& committed
162
163
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
164

&'s avatar
& committed
165
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
166
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
167
        preds = list(preds)
&'s avatar
& committed
168
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
169
170
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
171
172

    return refs, preds
Leo Gao's avatar
Leo Gao committed
173
174
175
176

## stderr stuff


Leo Gao's avatar
Leo Gao committed
177
def bootstrap_stderr(f, xs, iters=100000):
Leo Gao's avatar
Leo Gao committed
178
179
180
181
182
183
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
    # equivalent to stderr calculated without Bessel's correction in the stddev. 
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
184
185
186
187
188
189
190
    rnd = random.Random()
    rnd.seed(42)
    res = []
    from tqdm import trange
    print("bootstrapping for stddev:", f.__name__)
    for i in trange(iters):
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
191
192
        bootstrap = f(rnd.choices(xs, k=len(xs)))
        res.append(bootstrap)
Leo Gao's avatar
Leo Gao committed
193

Leo Gao's avatar
Leo Gao committed
194
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208


def stderr_for_metric(metric):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
Leo Gao's avatar
Leo Gao committed
209
        return lambda x: bootstrap_stderr(metric, x)
Leo Gao's avatar
Leo Gao committed
210
211
212
213
214
215
216

    stderr = {
        mean: mean_stderr,
        acc_all: acc_all_stderr
        
    }

Leo Gao's avatar
Leo Gao committed
217
    return stderr.get(metric, None)