"csrc/quantization/gptq/qdq_8.cuh" did not exist on "929b4f2973ec6a53ea4f0f03d21147ef8b8278be"
model.py 22.8 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

3
import abc
4
5
6
import hashlib
import json
import logging
haileyschoelkopf's avatar
haileyschoelkopf committed
7
import os
Baber's avatar
Baber committed
8
9
from collections.abc import Iterable
from typing import TYPE_CHECKING, Any, TypeVar
10

11
from tqdm import tqdm
12

13
from lm_eval import utils
14

lintangsutawika's avatar
lintangsutawika committed
15

16
17
18
19
20
21
if TYPE_CHECKING:
    from sqlitedict import SqliteDict

    from lm_eval.api.instance import Instance


Lintang Sutawika's avatar
Lintang Sutawika committed
22
eval_logger = logging.getLogger(__name__)
23

24
25
T = TypeVar("T", bound="LM")

26
27

class LM(abc.ABC):
Ethan Smith's avatar
Ethan Smith committed
28
    def __init__(self) -> None:
29
30
31
32
33
        """Defines the interface that should be implemented by all LM subclasses.
        LMs are assumed to take text (strings) as input and yield strings as output
        (inputs/outputs should be tokenization-agnostic.)

        """
34
35
36
        # set rank and world size to a single process, by default.
        self._rank = 0
        self._world_size = 1
Baber's avatar
Baber committed
37
        self.cache_hook: CacheHook = CacheHook(None)
38
39

    @abc.abstractmethod
40
    def loglikelihood(self, requests) -> list[tuple[float, bool]]:
41
42
43
44
        """Compute log-likelihood of generating a continuation from a context.
        Downstream tasks should attempt to use loglikelihood instead of other
        LM calls whenever possible.

baberabb's avatar
baberabb committed
45
46
47
        :param requests: list[Instance]
            A list of Instance objects, with property `args` which returns a tuple (context, continuation).
            `context: str`
48
49
                Context string. Implementations of LM must be able to handle an
                empty context string.
baberabb's avatar
baberabb committed
50
            `continuation: str`
51
52
53
                The continuation over which log likelihood will be calculated. If
                there is a word boundary, the space should be in the continuation.
                For example, context="hello" continuation=" world" is correct.
baberabb's avatar
baberabb committed
54
55

        :return: list[tuple[float, bool]]
56
            A list of pairs (logprob, isgreedy)
baberabb's avatar
baberabb committed
57
58
59
60
            `logprob: float`
                The log probability of `continuation`.
            `isgreedy`:
                Whether `continuation` would be generated by greedy sampling from `context`.
61
62
63
64
        """
        pass

    @abc.abstractmethod
65
    def loglikelihood_rolling(self, requests) -> list[float]:
66
67
68
69
70
71
72
73
74
75
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
          multiple chunks, the last input will still a full-sized context.
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
76
            Prefix: BOS/EOS
77
78
79
            Max context length: 4
            Resulting input/prediction pairs:

80
                INPUT:  BOS   0   1   2
81
82
83
84
85
86
87
88
89
90
91
92
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

baberabb's avatar
baberabb committed
93
        :param requests: list[Instance]
94
            A list of Instance objects with property `args` which returns a tuple (context,).
95
            string: str
96
97
98
                String for which we are computing overall loglikelihood
        :return: list[tuple[float]]
            A list of tuples (logprob,)
99
            logprob: float
100
101
                The log probability of `context` conditioned on the BOS/EOS token.
                Can also be overridden for custom cases by `prefix_token_id`.
102
103
104
105
106
        """
        pass

    # TODO: Add an optional max length
    @abc.abstractmethod
107
    def generate_until(self, requests) -> list[str]:
108
109
        """Generate greedily until a stopping sequence

baberabb's avatar
baberabb committed
110
        :param requests: list[Instance]
Baber Abbasi's avatar
Baber Abbasi committed
111
            A list of Instance objects with property `args` which returns a tuple (context, gen_kwargs).
112
113
            context: str
                Context string
Baber Abbasi's avatar
Baber Abbasi committed
114
115
            gen_kwargs: dict
                A dictionary of keyword arguments to pass to the generation function e.g. top_k, until, etc.
baberabb's avatar
baberabb committed
116
        :return: list[str]
Baber Abbasi's avatar
Baber Abbasi committed
117
            A list of model generated continuations.
118
119
120
121
122
            continuation: str
                The generated continuation.
        """
        pass

Baber Abbasi's avatar
Baber Abbasi committed
123
    def apply_chat_template(
124
        self, chat_history: list[dict[str, str]], add_generation_prompt=True
Baber Abbasi's avatar
Baber Abbasi committed
125
    ) -> str:
KonradSzafer's avatar
KonradSzafer committed
126
127
128
129
130
131
        """
        Defines how to transform few-shot examples provided as chat history into a format that can be used as input to the LM.

        :param chat_history: list[dict[str, str]]
            A list of dictionaries with keys 'role' and 'content'.
            Values are strings representing the role name and the content of the message, respectively.
Baber Abbasi's avatar
Baber Abbasi committed
132
133
        :param add_generation_prompt: bool
            Whether to append an assistant gen prefix (for e.g. <|assistant|>) to the assistant messages in the chat history. False if prefilling an assistant message.
KonradSzafer's avatar
KonradSzafer committed
134
135
136
137
138
139
140
        :return: str
            A string representing the chat history in a format that can be used as input to the LM.
        """
        raise NotImplementedError(
            "To use this model with chat templates, please implement the 'apply_chat_template' method for your model type."
        )

141
    @classmethod
142
    def create_from_arg_string(
Baber's avatar
Baber committed
143
        cls: type[T], arg_string: str, additional_config: dict | None = None
144
145
146
147
148
149
150
151
152
153
154
    ) -> T:
        """
        Creates an instance of the LM class using the given argument string and additional config.

        Parameters:
        - arg_string: A string containing arguments in the format key1=value1,key2=value2.
        - additional_config: Optional dictionary containing additional configuration parameters.

        Returns:
        - Instance of the LM class.
        """
155
156
157
158
        additional_config = {} if additional_config is None else additional_config
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)
haileyschoelkopf's avatar
haileyschoelkopf committed
159

160
161
    @classmethod
    def create_from_arg_obj(
Baber's avatar
Baber committed
162
        cls: type[T], arg_dict: dict, additional_config: dict | None = None
163
164
165
166
167
168
169
170
171
172
173
174
    ) -> T:
        """
        Creates an instance of the LM class using the given arg_obj

        Parameters:
        - arg_obj: A dict containing arguments in the format key1=value1,key2=value2.
        - additional_config: Optional dictionary containing additional configuration parameters.

        Returns:
        - Instance of the LM class.
        """

175
        additional_config = additional_config or {} | {
176
177
178
179
180
            k: v for k, v in additional_config.items() if v is not None
        }

        return cls(**arg_dict, **additional_config)

haileyschoelkopf's avatar
haileyschoelkopf committed
181
182
183
184
185
    @property
    def rank(self):
        # used in the case of parallelism. Hardcoded to
        # ensure no errors arise using API models which do
        # not support multi-device parallelism nor expect it.
186
        return self._rank
haileyschoelkopf's avatar
haileyschoelkopf committed
187
188
189
190
191
192

    @property
    def world_size(self):
        # used in the case of parallelism. Hardcoded to
        # ensure no errors arise using API models which do
        # not support multi-device parallelism nor expect it.
193
        return self._world_size
haileyschoelkopf's avatar
haileyschoelkopf committed
194

KonradSzafer's avatar
KonradSzafer committed
195
196
197
198
199
200
201
202
203
204
    @property
    def tokenizer_name(self) -> str:
        """Must be defined for LM subclasses which implement Chat Templating.
        Should return the name of the tokenizer or chat template used.
        Used only to properly fingerprint caches when requests are being cached with `--cache_requests`, otherwise not used.
        """
        raise NotImplementedError(
            "To use this model with chat templates, please implement the 'tokenizer_name' property."
        )

Baber's avatar
Baber committed
205
    def chat_template(self, chat_template: bool | str = False) -> str | None:
206
207
208
        """Returns the chat template structure for user/assistant messages if a template is provided.
        This method is intended to be overridden in a subclass to define a specific chat template format.
        For models that do not support chat templates, this method returns None by default.
KonradSzafer's avatar
KonradSzafer committed
209
        """
210
211

        return ""
KonradSzafer's avatar
KonradSzafer committed
212

Baber's avatar
Baber committed
213
    def set_cache_hook(self, cache_hook: CacheHook) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
214
215
216
217
        self.cache_hook = cache_hook


### SQLite-based caching of LM responses
218
def hash_args(attr: str, args: Iterable[Any]) -> str:
haileyschoelkopf's avatar
haileyschoelkopf committed
219
220
221
222
223
    dat = json.dumps([attr] + list(args))
    return hashlib.sha256(dat.encode("utf-8")).hexdigest()


class CacheHook:
Baber's avatar
Baber committed
224
    def __init__(self, cachinglm: CachingLM | None) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
225
        if cachinglm is None:
Baber's avatar
Baber committed
226
            self.dbdict: SqliteDict | None = None
haileyschoelkopf's avatar
haileyschoelkopf committed
227
228
229
230
            return

        self.dbdict = cachinglm.dbdict

231
    def add_partial(self, attr: str, req: Iterable[Any], res: Any) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
232
233
234
235
236
237
238
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


class CachingLM:
239
    def __init__(self, lm: LM, cache_db: str) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
240
241
242
243
244
245
246
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
247
248
249
250
        from sqlitedict import SqliteDict

        self.lm: LM = lm
        self.cache_db: str = cache_db
haileyschoelkopf's avatar
haileyschoelkopf committed
251
252
253
254
255
256
257
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
        self.dbdict = SqliteDict(cache_db, autocommit=True)

        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

258
    def __getattr__(self, attr: str) -> Any:
haileyschoelkopf's avatar
haileyschoelkopf committed
259
        lm_attr = getattr(self.lm, attr)
Baber Abbasi's avatar
Baber Abbasi committed
260
261
        if attr not in ["loglikelihood", "loglikelihood_rolling", "generate_until"]:
            eval_logger.debug(f"Passing through attribute '{attr}' to underlying LM")
haileyschoelkopf's avatar
haileyschoelkopf committed
262
263
            return lm_attr

Baber's avatar
Baber committed
264
        def _fn(requests: list[Instance]) -> list[Instance]:
haileyschoelkopf's avatar
haileyschoelkopf committed
265
266
267
268
            res = []
            remaining_reqs = []
            warned = False
            # figure out which ones are cached and which ones are new
269
270
271
            eval_logger.info(
                f"Loading '{attr}' responses from cache '{self.cache_db}' where possible..."
            )
272
            for req in tqdm(requests, desc="Checking cached requests"):
haileyschoelkopf's avatar
haileyschoelkopf committed
273
                hsh = hash_args(attr, req.args)
274
                if attr == "generate_until" and req.args[1].get("do_sample", False):
haileyschoelkopf's avatar
haileyschoelkopf committed
275
276
277
278
                    # when we are doing non-greedy generation, don't use the cache
                    # (else every "randomly sampled" generation would be identical for repeats > 1).
                    if not warned:
                        eval_logger.warning(
279
                            f"Arguments to lm.generate_until() '{req.args[1]}' include non-deterministic sampling. Caching will not be performed for such requests."
haileyschoelkopf's avatar
haileyschoelkopf committed
280
281
282
283
284
285
286
287
288
289
290
291
292
                        )
                        warned = True
                    res.append(None)
                    remaining_reqs.append(req)
                elif hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
293
294
295
            eval_logger.info(
                f"Cached requests: {len(requests) - len(remaining_reqs)}, Requests remaining: {len(remaining_reqs)}"
            )
296
297
298
299
300
            if remaining_reqs:
                # actually run the LM on the requests that do not have cached results
                rem_res = getattr(self.lm, attr)(remaining_reqs)
            else:
                rem_res = []
haileyschoelkopf's avatar
haileyschoelkopf committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
                while res[resptr] is not None:
                    resptr += 1

                res[resptr] = r

                # caching
                hsh = hash_args(attr, req.args)
                self.dbdict[hsh] = r
            self.dbdict.commit()

            return res

317
        return _fn
haileyschoelkopf's avatar
haileyschoelkopf committed
318

Baber's avatar
Baber committed
319
    def get_cache_hook(self) -> CacheHook:
haileyschoelkopf's avatar
haileyschoelkopf committed
320
        return CacheHook(self)
321
322
323
324
325
326
327
328


class TemplateLM(LM):
    """
    A class acting as intermediary between the LM base class
    and boilerplate often included in other LM subclasses.
    """

329
    tokenizer = None
Baber's avatar
Baber committed
330
    backend = "causal"
331

332
333
    @property
    @abc.abstractmethod
Baber's avatar
Baber committed
334
    def eot_token_id(self) -> int:
335
336
        pass

337
338
339
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
340
        return self.eot_token_id
341

342
    @abc.abstractmethod
Baber's avatar
Baber committed
343
344
345
    def tok_encode(
        self, string: str, add_special_tokens: bool | None = None, **kwargs
    ) -> list[int]:
Baber Abbasi's avatar
Baber Abbasi committed
346
347
348
        """
        Tokenize a string using the model's tokenizer and return a list of token IDs.
        """
349
350
351
        pass

    @abc.abstractmethod
352
    def _loglikelihood_tokens(
Baber's avatar
Baber committed
353
        self, requests: list[Instance], **kwargs
354
    ) -> list[tuple[float, bool]]:
355
356
        pass

Baber Abbasi's avatar
Baber Abbasi committed
357
358
    def _encode_pair(
        self, context: str, continuation: str
359
    ) -> tuple[list[int], list[int]]:
Baber's avatar
Baber committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        """
        Encode a context-continuation pair into separate token ID lists.

        This method handles the tokenization of context and continuation strings while
        preserving proper boundary handling. Trailing spaces in the context are moved
        to the beginning of the continuation to ensure correct tokenization at the
        word boundary.

        For Seq2Seq models (encoder-decoder), context and continuation are encoded
        separately. For other model types (decoder-only), the full sequence is encoded
        together to ensure proper tokenization, then split at the context boundary.

        :param context: str
            The context string. Can be empty (will be handled by the caller).
        :param continuation: str
            The continuation string to be scored.

        :return: tuple[list[int], list[int]]
            A tuple of (context_enc, continuation_enc) where:
            - context_enc: Token IDs for the context
            - continuation_enc: Token IDs for the continuation

        Note:
            This method does NOT handle empty context. The caller should
            handle empty context (see loglikelihood method).
        """
Baber's avatar
Baber committed
386
        assert context, "Context cannot be empty!"
387

388
389
390
391
392
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]

Baber's avatar
Baber committed
393
        if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
394
395
396
397
398
            whole_enc = self.tok_encode(context + continuation)
            context_enc = self.tok_encode(context)

            context_enc_len = len(context_enc)
            continuation_enc = whole_enc[context_enc_len:]
Baber's avatar
Baber committed
399
400
401
402
        else:
            # for SEQ2SEQ case we need to encode separately
            context_enc = self.tok_encode(context)
            continuation_enc = self.tok_encode(continuation, add_special_tokens=False)
403
404
405

        return context_enc, continuation_enc

406
    def loglikelihood(
Baber's avatar
Baber committed
407
        self, requests: list[Instance], disable_tqdm: bool = False
408
    ) -> list[tuple[float, bool]]:
Baber's avatar
Baber committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
        """
        Compute log-likelihood of generating continuations from contexts.

        This is the concrete implementation for TemplateLM and its subclasses.
        It tokenizes context-continuation pairs and delegates scoring to
        _loglikelihood_tokens.

        **IMPORTANT**: This method is expected to handle empty context strings.
        When context is empty (""), it uses the model's prefix_token_id (typically
        BOS or EOS token) as context. If the continuation already starts with the
        prefix token, it reuses that token as context instead of duplicating it.

        :param requests: list[Instance]
            List of Instance objects with property `args` returning (context, continuation) tuples.
        :param disable_tqdm: bool
            Whether to disable the progress bar in _loglikelihood_tokens.

        :return: list[tuple[float, bool]]
            List of (log_prob, is_greedy) tuples for each request.

        Implementation details:
            - Empty context: Uses prefix_token_id (BOS/EOS) as context
            - Non-empty context: Uses _encode_pair for proper tokenization
            - Avoids token duplication when continuation starts with prefix_token_id
        """
434
435
436
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
Baber's avatar
Baber committed
437
438
439
                continuation_enc = self.tok_encode(
                    continuation, add_special_tokens=False
                )
Baber's avatar
Baber committed
440
                # BOS or EOS as context: handle when context is empty -> (context + continuation) -> (BOS + continuation
441
                context_enc, continuation_enc = (
442
443
444
                    ([self.prefix_token_id], continuation_enc)
                    if self.prefix_token_id != continuation_enc[0]
                    else (continuation_enc[:1], continuation_enc[1:])
445
                )
446
                # BOS or EOS as context
447
448
449
450
451
            else:
                context_enc, continuation_enc = self._encode_pair(context, continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

452
        return self._loglikelihood_tokens(new_reqs, disable_tqdm=disable_tqdm)
453
454

    @abc.abstractmethod
455
456
    def loglikelihood_rolling(
        self, requests, disable_tqdm: bool = False
457
    ) -> list[float]:
458
459
460
        pass

    @abc.abstractmethod
461
    def generate_until(self, requests, disable_tqdm: bool = False) -> list[str]:
462
        pass
463

Baber's avatar
Baber committed
464
    def chat_template(self, chat_template: bool | str = False) -> str | None:
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
        """
        Set and get the appropriate chat template for the model.
        This method sets the tokenizer's chat_template and returns the template string for reproducibility.

        The template selection logic is adapted from the Transformers library's `apply_chat_template`
        method in the Tokenizer class. The original implementation can be found at:
        https://github.com/huggingface/transformers/blob/fc35907f95459d7a6c5281dfadd680b6f7b620e3/src/transformers/tokenization_utils_base.py#L1687

        This method ensures that the right template is chosen based on the following:
        0. If the model has no 'tokenizer' attribute: assumes that there is only a single possible chat template, handled on the model provider side internally. Returns the empty string.
        1. If the model's tokenizer has multiple templates:
            a. Use the specified template if it exists in the dictionary.
            b. Use the default template from the list if no specific template is provided.
            c. Raise an error if no default template exists and no specific template is provided.
        2. If the model's tokenizer has a single template or no template:
            a. Use the tokenizer's chat template if available.
            b. Fall back to the default chat template if no tokenizer chat template exists.

        Args:
            chat_template (Union[bool, str]): Specifies the chat template to use.
                - If False or None, no template is applied.
                - If True, the default or only available template is used.
                - If a string, the template with the matching name is used.

        Returns:
            Optional[str]: The selected chat template, or None if no template is applied.
        """
        if self.tokenizer is None:
            return ""

        if chat_template is False or chat_template is None:
            eval_logger.warning(
                "model.chat_template was called with the chat_template set to False or None. "
                "Therefore no chat template will be applied. Make sure this is an intended behavior."
            )
            return None

        # Convert boolean chat_template to None to ensure compatibility with the adapted logic
        if isinstance(chat_template, bool):
            chat_template = None
        using_default_template = False

        # First, handle the cases when the model has a dict of multiple templates
508
509
510
511
512
513
        try:
            template = (
                self.tokenizer.chat_template or self.tokenizer.default_chat_template
            )
        except AttributeError:
            return None
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

        if isinstance(template, dict):
            using_default_dict = self.tokenizer.chat_template is None

            if chat_template is not None:
                if chat_template in template:
                    selected_template = template[chat_template]
                    if using_default_dict:
                        using_default_template = True
                else:
                    raise ValueError(
                        f"The specified chat template '{chat_template}' is not available. "
                        f"Available template names are {sorted(template.keys())}."
                    )
            else:
                # If user didn't pass a chat template, use the default template from the dict
                if "default" in template:
                    selected_template = template["default"]
                    using_default_template = True
                else:
                    raise ValueError(
                        "This model has multiple chat templates with no default specified! Please either pass a chat "
                        "template or the name of the template you wish to use to the `chat_template` argument. Available "
                        f"template names are {sorted(template.keys())}."
                    )

        # Cases when the model has a single template or no template
        else:
            # priority: `chat_template` argument > `tokenizer.chat_template` > `tokenizer.default_chat_template
            if isinstance(chat_template, str):
                eval_logger.warning(
                    "Chat template name provided, but the tokenizer's chat template is not a dictionary. "
                    "Using the tokenizer's chat template or the default template instead."
                )
            if self.tokenizer.chat_template is not None:
                selected_template = self.tokenizer.chat_template
            else:
                selected_template = self.tokenizer.default_chat_template
                using_default_template = True

        if using_default_template:
            eval_logger.warning(
                "No chat template is set for this tokenizer, falling back to a default class-level template. This is "
                "very error-prone, because models are often trained with templates different from the class default! "
                "Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which "
                "point any code depending on them will stop working. We recommend setting a valid chat template before "
                "then to ensure that this model continues working without issues."
            )

        return selected_template