anthropic_llms.py 12.1 KB
Newer Older
1
2
3
4
from typing import Any, List, Tuple

from tqdm import tqdm

5
from lm_eval import utils
6
7
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
8
from lm_eval.models.utils import retry_on_specific_exceptions
9

Jason Phang's avatar
Jason Phang committed
10

11
eval_logger = utils.eval_logger
Jason Phang's avatar
Jason Phang committed
12

lintangsutawika's avatar
lintangsutawika committed
13

lintangsutawika's avatar
lintangsutawika committed
14
def anthropic_completion(
15
    client,  #: anthropic.Anthropic,
baberabb's avatar
baberabb committed
16
17
18
19
20
    model: str,
    prompt: str,
    max_tokens_to_sample: int,
    temperature: float,
    stop: List[str],
baberabb's avatar
baberabb committed
21
    **kwargs: Any,
baberabb's avatar
baberabb committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
) -> str:
    """Wrapper function around the Anthropic completion API client with exponential back-off
    in case of RateLimitError.

    params:
        client: anthropic.Anthropic
            Anthropic API client
        model: str
            Anthropic model e.g. 'claude-instant-v1', 'claude-2'
        prompt: str
            Prompt to feed to the model
        max_tokens_to_sample: int
            Maximum number of tokens to sample from the model
        temperature: float
            Sampling temperature
        stop: List[str]
            List of stop sequences
        kwargs: Any
            Additional model_args to pass to the API client
Jason Phang's avatar
Jason Phang committed
41
    """
42
43
44
45
46
47

    try:
        import anthropic
    except ModuleNotFoundError:
        raise Exception(
            "attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
Seungwoo Ryu's avatar
Seungwoo Ryu committed
48
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
49
50
        )

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    def _exception_callback(e: Exception, sleep_time: float) -> None:
        eval_logger.warning(
            f"RateLimitError occurred: {e.__cause__}\n Retrying in {sleep_time} seconds"
        )

    @retry_on_specific_exceptions(
        on_exceptions=[anthropic.RateLimitError],
        max_retries=None,  # retry forever, consider changing
        on_exception_callback=_exception_callback,
    )
    def completion():
        response = client.completions.create(
            prompt=f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}",
            model=model,
            # NOTE: Claude really likes to do CoT, and overly aggressive stop sequences
            #       (e.g. gsm8k's ":") may truncate a lot of the input.
            stop_sequences=[anthropic.HUMAN_PROMPT] + stop,
            max_tokens_to_sample=max_tokens_to_sample,
            temperature=temperature,
            **kwargs,
        )
        return response.completion

    return completion()
Jason Phang's avatar
Jason Phang committed
75
76


Seungwoo Ryu's avatar
Seungwoo Ryu committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
def anthropic_chat(
    client,  #: anthropic.Anthropic,
    model: str,
    prompt: str,
    max_tokens: int,
    temperature: float,
    stop: List[str],
    **kwargs: Any,
) -> str:
    """Wrapper function around the Anthropic completion API client with exponential back-off
    in case of RateLimitError.

    params:
        client: anthropic.Anthropic
            Anthropic API client
        model: str
            Anthropic model e.g. 'claude-3-opus-20240229', 'claude-3-sonnet-20240229'
        prompt: str
            Prompt to feed to the model
        max_tokens: int
            Maximum number of tokens to sample from the model
        temperature: float
            Sampling temperature
        stop: List[str]
            List of stop sequences
        kwargs: Any
            Additional model_args to pass to the API client
    """

    try:
        import anthropic
    except ModuleNotFoundError:
        raise Exception(
            "attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
        )

    def _exception_callback(e: Exception, sleep_time: float) -> None:
        eval_logger.warning(
            f"RateLimitError occurred: {e.__cause__}\n Retrying in {sleep_time} seconds"
        )

    @retry_on_specific_exceptions(
        on_exceptions=[
            anthropic.RateLimitError,
            anthropic.APIConnectionError,
            anthropic.APIStatusError,
        ],
        max_retries=None,  # retry forever, consider changing
        on_exception_callback=_exception_callback,
    )
    def messages():
        response = client.messages.create(
            model=model,
            max_tokens=max_tokens,
            temperature=temperature,
            messages=[{"role": "user", "content": f"{prompt}"}],
            **kwargs,
        )
        return response.content[0].text

    return messages()


haileyschoelkopf's avatar
haileyschoelkopf committed
141
@register_model("anthropic")
lintangsutawika's avatar
lintangsutawika committed
142
class AnthropicLM(LM):
baberabb's avatar
baberabb committed
143
    REQ_CHUNK_SIZE = 20  # TODO: not used
Jason Phang's avatar
Jason Phang committed
144

baberabb's avatar
baberabb committed
145
146
    def __init__(
        self,
147
        batch_size: int = 1,
baberabb's avatar
baberabb committed
148
149
        model: str = "claude-2.0",
        max_tokens_to_sample: int = 256,
150
151
        temperature: float = 0,  # defaults to 1
        **kwargs,  # top_p, top_k, etc.
Ethan Smith's avatar
Ethan Smith committed
152
    ) -> None:
baberabb's avatar
baberabb committed
153
        """Anthropic API wrapper.
Jason Phang's avatar
Jason Phang committed
154
155

        :param model: str
baberabb's avatar
baberabb committed
156
            Anthropic model e.g. 'claude-instant-v1', 'claude-2'
baberabb's avatar
baberabb committed
157
158
159
160
161
162
        :param max_tokens_to_sample: int
            Maximum number of tokens to sample from the model
        :param temperature: float
            Sampling temperature
        :param kwargs: Any
            Additional model_args to pass to the API client
Jason Phang's avatar
Jason Phang committed
163
164
        """
        super().__init__()
lintangsutawika's avatar
lintangsutawika committed
165

166
167
168
169
170
        try:
            import anthropic
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
Seungwoo Ryu's avatar
Seungwoo Ryu committed
171
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
172
173
            )

Jason Phang's avatar
Jason Phang committed
174
        self.model = model
baberabb's avatar
baberabb committed
175
        # defaults to os.environ.get("ANTHROPIC_API_KEY")
baberabb's avatar
baberabb committed
176
        self.client = anthropic.Anthropic()
baberabb's avatar
baberabb committed
177
178
179
        self.temperature = temperature
        self.max_tokens_to_sample = max_tokens_to_sample
        self.tokenizer = self.client.get_tokenizer()
baberabb's avatar
baberabb committed
180
        self.kwargs = kwargs
Jason Phang's avatar
Jason Phang committed
181
182
183

    @property
    def eot_token_id(self):
baberabb's avatar
baberabb committed
184
        # Not sure but anthropic.HUMAN_PROMPT ?
Jason Phang's avatar
Jason Phang committed
185
186
187
        raise NotImplementedError("No idea about anthropic tokenization.")

    @property
baberabb's avatar
baberabb committed
188
    def max_length(self) -> int:
Jason Phang's avatar
Jason Phang committed
189
190
191
        return 2048

    @property
baberabb's avatar
baberabb committed
192
    def max_gen_toks(self) -> int:
baberabb's avatar
baberabb committed
193
        return self.max_tokens_to_sample
Jason Phang's avatar
Jason Phang committed
194
195
196
197

    @property
    def batch_size(self):
        # Isn't used because we override _loglikelihood_tokens
baberabb's avatar
baberabb committed
198
        raise NotImplementedError("No support for logits.")
Jason Phang's avatar
Jason Phang committed
199
200
201
202

    @property
    def device(self):
        # Isn't used because we override _loglikelihood_tokens
baberabb's avatar
baberabb committed
203
        raise NotImplementedError("No support for logits.")
Jason Phang's avatar
Jason Phang committed
204

baberabb's avatar
baberabb committed
205
206
    def tok_encode(self, string: str) -> List[int]:
        return self.tokenizer.encode(string).ids
Jason Phang's avatar
Jason Phang committed
207

baberabb's avatar
baberabb committed
208
209
    def tok_decode(self, tokens: List[int]) -> str:
        return self.tokenizer.decode(tokens)
Jason Phang's avatar
Jason Phang committed
210

Ethan Smith's avatar
Ethan Smith committed
211
    def _loglikelihood_tokens(self, requests, disable_tqdm: bool = False):
Jason Phang's avatar
Jason Phang committed
212
213
        raise NotImplementedError("No support for logits.")

214
    def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
215
216
217
218
219
        try:
            import anthropic
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
Seungwoo Ryu's avatar
Seungwoo Ryu committed
220
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
221
222
            )

Jason Phang's avatar
Jason Phang committed
223
224
225
        if not requests:
            return []

baberabb's avatar
baberabb committed
226
        _requests: List[Tuple[str, dict]] = [req.args for req in requests]
haileyschoelkopf's avatar
haileyschoelkopf committed
227

Jason Phang's avatar
Jason Phang committed
228
        res = []
229
        for request in tqdm(_requests, disable=disable_tqdm):
baberabb's avatar
baberabb committed
230
231
232
            try:
                inp = request[0]
                request_args = request[1]
233
234
235
236
                # generation_kwargs
                until = request_args.get("until")
                max_gen_toks = request_args.get("max_gen_toks", self.max_length)
                temperature = request_args.get("temperature", self.temperature)
baberabb's avatar
baberabb committed
237
238
239
240
                response = anthropic_completion(
                    client=self.client,
                    model=self.model,
                    prompt=inp,
241
242
                    max_tokens_to_sample=max_gen_toks,
                    temperature=temperature,  # TODO: implement non-greedy sampling for Anthropic
baberabb's avatar
baberabb committed
243
                    stop=until,  # type: ignore
baberabb's avatar
baberabb committed
244
245
246
247
                    **self.kwargs,
                )
                res.append(response)

248
                self.cache_hook.add_partial("generate_until", request, response)
baberabb's avatar
baberabb committed
249
            except anthropic.APIConnectionError as e:  # type: ignore # noqa: F821
baberabb's avatar
baberabb committed
250
251
                eval_logger.critical(f"Server unreachable: {e.__cause__}")
                break
baberabb's avatar
baberabb committed
252
            except anthropic.APIStatusError as e:  # type: ignore # noqa: F821
baberabb's avatar
baberabb committed
253
254
                eval_logger.critical(f"API error {e.status_code}: {e.message}")
                break
haileyschoelkopf's avatar
haileyschoelkopf committed
255

Jason Phang's avatar
Jason Phang committed
256
257
258
259
260
261
262
        return res

    def _model_call(self, inps):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def _model_generate(self, context, max_length, eos_token_id):
263
        # Isn't used because we override generate_until
Jason Phang's avatar
Jason Phang committed
264
        raise NotImplementedError()
baberabb's avatar
baberabb committed
265

266
    def loglikelihood(self, requests, disable_tqdm: bool = False):
baberabb's avatar
baberabb committed
267
268
        raise NotImplementedError("No support for logits.")

269
    def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
baberabb's avatar
baberabb committed
270
        raise NotImplementedError("No support for logits.")
Seungwoo Ryu's avatar
Seungwoo Ryu committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309


@register_model("anthropic-chat", "anthropic-chat-completions")
class AnthropicChatLM(AnthropicLM):
    REQ_CHUNK_SIZE = 20  # TODO: not used

    def __init__(
        self,
        model: str,
        batch_size: int = 1,
        max_tokens: int = 256,
        temperature: float = 0,  # defaults to 1
        **kwargs,  # top_p, top_k, etc.
    ) -> None:
        """Anthropic API wrapper.

        :param model: str
            Anthropic model e.g. 'claude-3-opus-20240229', 'claude-3-sonnet-20240229'
        :param max_tokens: int
            Maximum number of tokens to sample from the model
        :param temperature: float
            Sampling temperature
        :param kwargs: Any
            Additional model_args to pass to the API client
        """
        super().__init__()

        try:
            import anthropic
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
            )

        self.model = model
        # defaults to os.environ.get("ANTHROPIC_API_KEY")
        self.client = anthropic.Anthropic()
        self.temperature = temperature
310
        self.max_tokens = max_tokens
Seungwoo Ryu's avatar
Seungwoo Ryu committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        self.tokenizer = self.client.get_tokenizer()
        self.kwargs = kwargs

    @property
    def max_gen_toks(self) -> int:
        return self.max_tokens

    def generate_until(self, requests) -> List[str]:
        try:
            import anthropic
        except ModuleNotFoundError:
            raise Exception(
                "attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
            )

        if not requests:
            return []

        _requests: List[Tuple[str, dict]] = [req.args for req in requests]

        res = []
        for request in tqdm(_requests):
            try:
                inp = request[0]
                request_args = request[1]
                # generation_kwargs
                until = request_args.get("until")
                max_tokens = request_args.get("max_gen_toks", self.max_length)
                temperature = request_args.get("temperature", self.temperature)
                response = anthropic_chat(
                    client=self.client,
                    model=self.model,
                    prompt=inp,
                    max_tokens=max_tokens,
                    temperature=temperature,  # TODO: implement non-greedy sampling for Anthropic
                    stop=until,  # type: ignore
                    **self.kwargs,
                )
                res.append(response)

                self.cache_hook.add_partial("generate_until", request, response)
            except anthropic.APIConnectionError as e:  # type: ignore # noqa: F821
                eval_logger.critical(f"Server unreachable: {e.__cause__}")
                break
            except anthropic.APIStatusError as e:  # type: ignore # noqa: F821
                eval_logger.critical(f"API error {e.status_code}: {e.message}")
                break

        return res