gpt3.py 2.51 KB
Newer Older
Jason Phang's avatar
gpt3  
Jason Phang committed
1
2
import os
import transformers
Jason Phang's avatar
lib  
Jason Phang committed
3
4
from lm_eval.base import LM
from lm_eval import utils
Leo Gao's avatar
Leo Gao committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from tqdm import tqdm


def get_result(response, ctxlen):
    is_greedy = True
    logprobs = response["logprobs"]["token_logprobs"]
    continuation_logprobs = sum(logprobs[ctxlen:])

    for i in range(ctxlen, len(response["logprobs"]["tokens"])):
        token = response["logprobs"]["tokens"][i]
        top_tokens = response["logprobs"]["top_logprobs"][i]
        top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
        if top_token != token:
            is_greedy = False
            break
    
    return continuation_logprobs, is_greedy
Jason Phang's avatar
gpt3  
Jason Phang committed
22
23
24


class GPT3LM(LM):
Jason Phang's avatar
Jason Phang committed
25
26

    MAX_LENGTH = 2048
Leo Gao's avatar
Leo Gao committed
27
    REQ_CHUNK_SIZE = 64
Jason Phang's avatar
Jason Phang committed
28
29
30
31
32
33
34
35
36
37

    def __init__(self, engine, truncate=False):
        """

        :param engine: str
            OpenAI API engine (e.g. davinci)
        :param truncate: bool
            Truncate input if too long (if False and input is too long, throw error)
        """
        import openai
Jason Phang's avatar
gpt3  
Jason Phang committed
38
        self.engine = engine
39
        self.tokenizer = transformers.GPT2TokenizerFast.from_pretrained('gpt2')
Jason Phang's avatar
Jason Phang committed
40
41
        self.truncate = truncate

Jason Phang's avatar
gpt3  
Jason Phang committed
42
43
44
45
        # Read from environment variable OPENAI_API_SECRET_KEY
        openai.api_key = os.environ["OPENAI_API_SECRET_KEY"]

    @classmethod
Jason Phang's avatar
lib  
Jason Phang committed
46
    def create_from_arg_string(cls, arg_string):
Jason Phang's avatar
gpt3  
Jason Phang committed
47
48
49
        args = utils.simple_parse_args_string(arg_string)
        return cls(engine=args.get("engine", "davinci"))

Leo Gao's avatar
Leo Gao committed
50
    def loglikelihood(self, requests):
Jason Phang's avatar
Jason Phang committed
51
        import openai
Leo Gao's avatar
Leo Gao committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        res = []

        for chunk in tqdm(utils.chunks(requests, self.REQ_CHUNK_SIZE)):
            inps = []
            ctxlens = []
            for context, continuation in chunk:
                print(context)
                context_enc = self.tokenizer.encode(context)
                continuation_enc = self.tokenizer.encode(continuation)
                inp = (context_enc + continuation_enc)[-self.MAX_LENGTH:]
                ctxlen = len(context_enc) - max(0, len(context_enc) + len(continuation_enc) - self.MAX_LENGTH)

                inps.append(inp)
                ctxlens.append(ctxlen)

            response = openai.Completion.create(
                engine=self.engine,
                prompt=inps,
                echo=True,
                max_tokens=0, temperature=0.,
                logprobs=10,
            )

            for resp, ctxlen in zip(response.choices, ctxlens):
                res.append(get_result(resp, ctxlen))
            
        return res

    def greedy_until(self, requests):
        # TODO: implement
        pass