cost_estimate.py 2.76 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import random
2

Leo Gao's avatar
Leo Gao committed
3
import transformers
4

Baber's avatar
Baber committed
5
from lm_eval import evaluator
6
from lm_eval.api.model import LM
Leo Gao's avatar
Leo Gao committed
7
8
9
10
11


class DryrunLM(LM):
    def __init__(self):
        self.tokencost = 0
Fabrizio Milo's avatar
Fabrizio Milo committed
12
        self.tokenizer = transformers.GPT2TokenizerFast.from_pretrained("gpt2")
Leo Gao's avatar
Leo Gao committed
13
        self.tokenizer.pad_token = "<|endoftext|>"
Baber's avatar
Baber committed
14
15
        self._rank = 0
        self._world_size = 1
Leo Gao's avatar
Leo Gao committed
16
17
18
19
20
21
22

    @classmethod
    def create_from_arg_string(cls, arg_string):
        return cls()

    def loglikelihood(self, requests):
        res = []
Baber's avatar
Baber committed
23
        for ctx, cont in [req.args for req in requests]:
Leo Gao's avatar
Leo Gao committed
24
            res.append((-random.random(), False))
Baber's avatar
Baber committed
25
26
            # +1 for API models as they require at least on gen token
            self.tokencost += len(self.tokenizer.tokenize(ctx + cont)) + 1
Leo Gao's avatar
Leo Gao committed
27
28

        return res
Fabrizio Milo's avatar
Fabrizio Milo committed
29

30
    def generate_until(self, requests):
Leo Gao's avatar
Leo Gao committed
31
        res = []
Fabrizio Milo's avatar
Fabrizio Milo committed
32

Baber's avatar
Baber committed
33
        for ctx, gen_kwargs in [reg.args for reg in requests]:
Leo Gao's avatar
Leo Gao committed
34
            res.append("lol")
Baber's avatar
Baber committed
35
36
37
            max_new = gen_kwargs.get("max_gen_toks", 256)
            # assume worst case - generates until max_new tokens
            self.tokencost += len(self.tokenizer.tokenize(ctx)) + max_new
Leo Gao's avatar
Leo Gao committed
38
39

        return res
Fabrizio Milo's avatar
Fabrizio Milo committed
40

Leo Gao's avatar
Leo Gao committed
41
42
    def loglikelihood_rolling(self, requests):
        res = []
Fabrizio Milo's avatar
Fabrizio Milo committed
43
44

        for (s,) in requests:
Leo Gao's avatar
Leo Gao committed
45
46
47
48
            # assume worst case: extra full context
            self.tokencost += len(self.tokenizer.tokenize(s)) + 2048

        return res
Leo Gao's avatar
Leo Gao committed
49
50
51
52


def main():
    lm = DryrunLM()
Fabrizio Milo's avatar
Fabrizio Milo committed
53

Leo Gao's avatar
Leo Gao committed
54
    task_list = "arc_challenge,arc_easy,boolq,cola,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,record,rte,sciq,sst,triviaqa,webqs,wic,wikitext,winogrande,wnli,wsc"
Leo Gao's avatar
Leo Gao committed
55
    values = []
Leo Gao's avatar
Leo Gao committed
56
    for taskname in task_list.split(","):
Leo Gao's avatar
Leo Gao committed
57
        lm.tokencost = 0
58
        evaluator.simple_evaluate(
Baber's avatar
Baber committed
59
60
            model=lm,
            tasks=[taskname],
61
62
63
64
            num_fewshot=0,
            limit=None,
            bootstrap_iters=10,
        )
Leo Gao's avatar
Leo Gao committed
65
66

        print(taskname, lm.tokencost)
Fabrizio Milo's avatar
Fabrizio Milo committed
67
68
69
70
71
72
73
74
75
76
        values.append(
            [
                taskname,
                lm.tokencost,
                lm.tokencost / 1000 * 0.0008,
                lm.tokencost / 1000 * 0.0012,
                lm.tokencost / 1000 * 0.006,
                lm.tokencost / 1000 * 0.06,
            ]
        )
Leo Gao's avatar
Leo Gao committed
77
78
79
    from pytablewriter import MarkdownTableWriter

    writer = MarkdownTableWriter()
Leo Gao's avatar
Leo Gao committed
80
    writer.headers = ["Task", "Tokens", "Ada", "Babbage", "Curie", "Davinci"]
Leo Gao's avatar
Leo Gao committed
81
82
83

    values.sort(key=lambda x: -x[1])
    totcost = sum([x[1] for x in values])
Fabrizio Milo's avatar
Fabrizio Milo committed
84
85
86
87
88
89
90
91
92
93
    values.append(
        [
            "**Total**",
            totcost,
            totcost / 1000 * 0.0008,
            totcost / 1000 * 0.0012,
            totcost / 1000 * 0.006,
            totcost / 1000 * 0.06,
        ]
    )
Leo Gao's avatar
Leo Gao committed
94
95
96
97

    writer.value_matrix = values

    print(writer.dumps())
Fabrizio Milo's avatar
Fabrizio Milo committed
98
99


Leo Gao's avatar
Leo Gao committed
100
101
if __name__ == "__main__":
    main()