lm-eval-overview.ipynb 67.7 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
{
2
3
4
5
6
7
8
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Qw83KAePAhaS"
      },
      "source": [
lintangsutawika's avatar
lintangsutawika committed
9
        "# Releasing LM-Evaluation-Harness v0.4.0"
10
      ]
lintangsutawika's avatar
lintangsutawika committed
11
    },
12
13
14
15
16
17
18
19
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Z7k2vq1iAdqr"
      },
      "source": [
        "With the vast amount of work done in the field today, it helps to have a tool that people can use easily to share their results and use to check others to ensure reported numbers are valid. The LM Evaluation Harness is one such tool the community has used extensively. We want to continue to support the community and with that in mind, we’re excited to announce a major update on the LM Evaluation Harness to further our goal for open and accessible AI research."
      ]
lintangsutawika's avatar
lintangsutawika committed
20
    },
21
22
23
24
25
26
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0gDoM0AJAvEc"
      },
      "source": [
27
        "Our refactor stems from our desires to make the following believed best practices easier to carry out.  \n",
28
        "\n",
29
        "1.   Never copy results from other papers\n",
30
31
        "2.   Always share your exact prompts\n",
        "3.   Always provide model outputs\n",
32
33
34
35
36
37
38
39
        "4.   Qualitatively review a small batch of outputs before running evaluation jobs at scale\n",
        "\n",
        "We also wanted to make the library a better experience to use and to contribute or design evaluations within. New features in the new release that serve this purpose include:\n",
        "\n",
        "1. Faster Evaluation Runtimes (accelerated data-parallel inference with HF Transformers + Accelerate, and commonly used or faster inference libraries such as vLLM and Llama-CPP)\n",
        "2. Easier addition and sharing of new tasks (YAML-based task config formats, allowing single-file sharing of custom tasks)\n",
        "3. More configurability, for more advanced workflows and easier operation with modifying prompts\n",
        "4. Better logging of data at runtime and post-hoc"
40
      ]
lintangsutawika's avatar
lintangsutawika committed
41
    },
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "nnwsOpjda_YW"
      },
      "source": [
        "In this notebook we will be going through a short tutorial on how things work."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "zAov81vTbL2K"
      },
      "source": [
        "## Install LM-Eval"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
lintangsutawika's avatar
lintangsutawika committed
66
67
        },
        "id": "8hiosGzq_qZg",
lintangsutawika's avatar
lintangsutawika committed
68
        "outputId": "6ab73e5e-1f54-417e-a388-07e0d870b132"
lintangsutawika's avatar
lintangsutawika committed
69
70
71
72
      },
      "outputs": [
        {
          "name": "stdout",
73
          "output_type": "stream",
lintangsutawika's avatar
lintangsutawika committed
74
75
          "text": [
            "Collecting git+https://github.com/EleutherAI/lm-evaluation-harness.git@big-refactor\n",
lintangsutawika's avatar
lintangsutawika committed
76
77
            "  Cloning https://github.com/EleutherAI/lm-evaluation-harness.git (to revision big-refactor) to /tmp/pip-req-build-tnssql5s\n",
            "  Running command git clone --filter=blob:none --quiet https://github.com/EleutherAI/lm-evaluation-harness.git /tmp/pip-req-build-tnssql5s\n",
lintangsutawika's avatar
lintangsutawika committed
78
79
80
            "  Running command git checkout -b big-refactor --track origin/big-refactor\n",
            "  Switched to a new branch 'big-refactor'\n",
            "  Branch 'big-refactor' set up to track remote branch 'big-refactor' from 'origin'.\n",
lintangsutawika's avatar
lintangsutawika committed
81
            "  Resolved https://github.com/EleutherAI/lm-evaluation-harness.git to commit 42f486ee49b65926a444cb0620870a39a5b4b0a8\n",
lintangsutawika's avatar
lintangsutawika committed
82
83
84
85
86
            "  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "Collecting accelerate>=0.21.0 (from lm-eval==1.0.0)\n",
            "  Downloading accelerate-0.24.1-py3-none-any.whl (261 kB)\n",
lintangsutawika's avatar
lintangsutawika committed
87
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m261.4/261.4 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
lintangsutawika's avatar
lintangsutawika committed
88
89
            "\u001b[?25hCollecting evaluate (from lm-eval==1.0.0)\n",
            "  Downloading evaluate-0.4.1-py3-none-any.whl (84 kB)\n",
lintangsutawika's avatar
lintangsutawika committed
90
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.1/84.1 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
lintangsutawika's avatar
lintangsutawika committed
91
92
            "\u001b[?25hCollecting datasets>=2.0.0 (from lm-eval==1.0.0)\n",
            "  Downloading datasets-2.15.0-py3-none-any.whl (521 kB)\n",
lintangsutawika's avatar
lintangsutawika committed
93
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m521.2/521.2 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
lintangsutawika's avatar
lintangsutawika committed
94
95
96
97
98
            "\u001b[?25hCollecting jsonlines (from lm-eval==1.0.0)\n",
            "  Downloading jsonlines-4.0.0-py3-none-any.whl (8.7 kB)\n",
            "Requirement already satisfied: numexpr in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (2.8.7)\n",
            "Collecting peft>=0.2.0 (from lm-eval==1.0.0)\n",
            "  Downloading peft-0.6.2-py3-none-any.whl (174 kB)\n",
lintangsutawika's avatar
lintangsutawika committed
99
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m174.7/174.7 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
lintangsutawika's avatar
lintangsutawika committed
100
101
            "\u001b[?25hCollecting pybind11>=2.6.2 (from lm-eval==1.0.0)\n",
            "  Downloading pybind11-2.11.1-py3-none-any.whl (227 kB)\n",
lintangsutawika's avatar
lintangsutawika committed
102
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m227.7/227.7 kB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
lintangsutawika's avatar
lintangsutawika committed
103
104
            "\u001b[?25hCollecting pytablewriter (from lm-eval==1.0.0)\n",
            "  Downloading pytablewriter-1.2.0-py3-none-any.whl (111 kB)\n",
lintangsutawika's avatar
lintangsutawika committed
105
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m111.1/111.1 kB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
lintangsutawika's avatar
lintangsutawika committed
106
107
108
109
110
            "\u001b[?25hCollecting rouge-score>=0.0.4 (from lm-eval==1.0.0)\n",
            "  Downloading rouge_score-0.1.2.tar.gz (17 kB)\n",
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "Collecting sacrebleu>=1.5.0 (from lm-eval==1.0.0)\n",
            "  Downloading sacrebleu-2.3.2-py3-none-any.whl (119 kB)\n",
lintangsutawika's avatar
lintangsutawika committed
111
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m119.7/119.7 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
lintangsutawika's avatar
lintangsutawika committed
112
113
114
115
116
117
118
119
120
121
            "\u001b[?25hRequirement already satisfied: scikit-learn>=0.24.1 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (1.2.2)\n",
            "Collecting sqlitedict (from lm-eval==1.0.0)\n",
            "  Downloading sqlitedict-2.1.0.tar.gz (21 kB)\n",
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: torch>=1.8 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (2.1.0+cu118)\n",
            "Collecting tqdm-multiprocess (from lm-eval==1.0.0)\n",
            "  Downloading tqdm_multiprocess-0.0.11-py3-none-any.whl (9.8 kB)\n",
            "Requirement already satisfied: transformers>=4.1 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (4.35.2)\n",
            "Collecting zstandard (from lm-eval==1.0.0)\n",
            "  Downloading zstandard-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB)\n",
lintangsutawika's avatar
lintangsutawika committed
122
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.4/5.4 MB\u001b[0m \u001b[31m29.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
lintangsutawika's avatar
lintangsutawika committed
123
124
125
126
127
128
129
130
131
132
            "\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (1.23.5)\n",
            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (23.2)\n",
            "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (5.9.5)\n",
            "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (6.0.1)\n",
            "Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (0.19.4)\n",
            "Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (9.0.0)\n",
            "Collecting pyarrow-hotfix (from datasets>=2.0.0->lm-eval==1.0.0)\n",
            "  Downloading pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB)\n",
            "Collecting dill<0.3.8,>=0.3.0 (from datasets>=2.0.0->lm-eval==1.0.0)\n",
            "  Downloading dill-0.3.7-py3-none-any.whl (115 kB)\n",
lintangsutawika's avatar
lintangsutawika committed
133
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 kB\u001b[0m \u001b[31m14.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
lintangsutawika's avatar
lintangsutawika committed
134
135
136
137
138
139
            "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (1.5.3)\n",
            "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (2.31.0)\n",
            "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (4.66.1)\n",
            "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (3.4.1)\n",
            "Collecting multiprocess (from datasets>=2.0.0->lm-eval==1.0.0)\n",
            "  Downloading multiprocess-0.70.15-py310-none-any.whl (134 kB)\n",
lintangsutawika's avatar
lintangsutawika committed
140
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m19.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
lintangsutawika's avatar
lintangsutawika committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
            "\u001b[?25hRequirement already satisfied: fsspec[http]<=2023.10.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (2023.6.0)\n",
            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (3.8.6)\n",
            "Collecting responses<0.19 (from evaluate->lm-eval==1.0.0)\n",
            "  Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n",
            "Requirement already satisfied: safetensors in /usr/local/lib/python3.10/dist-packages (from peft>=0.2.0->lm-eval==1.0.0) (0.4.0)\n",
            "Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm-eval==1.0.0) (1.4.0)\n",
            "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm-eval==1.0.0) (3.8.1)\n",
            "Requirement already satisfied: six>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm-eval==1.0.0) (1.16.0)\n",
            "Collecting portalocker (from sacrebleu>=1.5.0->lm-eval==1.0.0)\n",
            "  Downloading portalocker-2.8.2-py3-none-any.whl (17 kB)\n",
            "Requirement already satisfied: regex in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm-eval==1.0.0) (2023.6.3)\n",
            "Requirement already satisfied: tabulate>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm-eval==1.0.0) (0.9.0)\n",
            "Collecting colorama (from sacrebleu>=1.5.0->lm-eval==1.0.0)\n",
            "  Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n",
            "Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm-eval==1.0.0) (4.9.3)\n",
            "Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm-eval==1.0.0) (1.11.3)\n",
            "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm-eval==1.0.0) (1.3.2)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm-eval==1.0.0) (3.2.0)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (3.13.1)\n",
            "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (4.5.0)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (1.12)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (3.2.1)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (3.1.2)\n",
            "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (2.1.0)\n",
            "Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.1->lm-eval==1.0.0) (0.15.0)\n",
            "Requirement already satisfied: attrs>=19.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonlines->lm-eval==1.0.0) (23.1.0)\n",
            "Requirement already satisfied: setuptools>=38.3.0 in /usr/local/lib/python3.10/dist-packages (from pytablewriter->lm-eval==1.0.0) (67.7.2)\n",
            "Collecting DataProperty<2,>=1.0.1 (from pytablewriter->lm-eval==1.0.0)\n",
            "  Downloading DataProperty-1.0.1-py3-none-any.whl (27 kB)\n",
            "Collecting mbstrdecoder<2,>=1.0.0 (from pytablewriter->lm-eval==1.0.0)\n",
            "  Downloading mbstrdecoder-1.1.3-py3-none-any.whl (7.8 kB)\n",
            "Collecting pathvalidate<4,>=2.3.0 (from pytablewriter->lm-eval==1.0.0)\n",
            "  Downloading pathvalidate-3.2.0-py3-none-any.whl (23 kB)\n",
            "Collecting tabledata<2,>=1.3.1 (from pytablewriter->lm-eval==1.0.0)\n",
            "  Downloading tabledata-1.3.3-py3-none-any.whl (11 kB)\n",
            "Collecting tcolorpy<1,>=0.0.5 (from pytablewriter->lm-eval==1.0.0)\n",
            "  Downloading tcolorpy-0.1.4-py3-none-any.whl (7.9 kB)\n",
            "Collecting typepy[datetime]<2,>=1.3.2 (from pytablewriter->lm-eval==1.0.0)\n",
            "  Downloading typepy-1.3.2-py3-none-any.whl (31 kB)\n",
            "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (3.3.2)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (6.0.4)\n",
            "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (4.0.3)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (1.9.2)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (1.4.0)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (1.3.1)\n",
            "Requirement already satisfied: chardet<6,>=3.0.4 in /usr/local/lib/python3.10/dist-packages (from mbstrdecoder<2,>=1.0.0->pytablewriter->lm-eval==1.0.0) (5.2.0)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.0.0->lm-eval==1.0.0) (3.4)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.0.0->lm-eval==1.0.0) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.0.0->lm-eval==1.0.0) (2023.7.22)\n",
            "Requirement already satisfied: python-dateutil<3.0.0,>=2.8.0 in /usr/local/lib/python3.10/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm-eval==1.0.0) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2018.9 in /usr/local/lib/python3.10/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm-eval==1.0.0) (2023.3.post1)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.8->lm-eval==1.0.0) (2.1.3)\n",
            "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score>=0.0.4->lm-eval==1.0.0) (8.1.7)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.8->lm-eval==1.0.0) (1.3.0)\n",
            "Building wheels for collected packages: lm-eval, rouge-score, sqlitedict\n",
            "  Building wheel for lm-eval (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
lintangsutawika's avatar
lintangsutawika committed
197
198
            "  Created wheel for lm-eval: filename=lm_eval-1.0.0-py3-none-any.whl size=994254 sha256=88356155b19f2891981ecef948326ad6ce8ca40a6009378410ec20d0e225995a\n",
            "  Stored in directory: /tmp/pip-ephem-wheel-cache-9v6ye7h3/wheels/17/01/26/599c0779e9858a70a73fa8a306699b5b9a868f820c225457b0\n",
lintangsutawika's avatar
lintangsutawika committed
199
            "  Building wheel for rouge-score (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
lintangsutawika's avatar
lintangsutawika committed
200
            "  Created wheel for rouge-score: filename=rouge_score-0.1.2-py3-none-any.whl size=24933 sha256=6bb0d44e4881972c43ce194e7cb65233d309758cb15f0dec54590d3d2efcfc36\n",
lintangsutawika's avatar
lintangsutawika committed
201
202
            "  Stored in directory: /root/.cache/pip/wheels/5f/dd/89/461065a73be61a532ff8599a28e9beef17985c9e9c31e541b4\n",
            "  Building wheel for sqlitedict (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
lintangsutawika's avatar
lintangsutawika committed
203
            "  Created wheel for sqlitedict: filename=sqlitedict-2.1.0-py3-none-any.whl size=16863 sha256=5747f7dd73ddf3d8fbcebf51b5e4f718fabe1e94bccdf16d2f22a2e65ee7fdf4\n",
lintangsutawika's avatar
lintangsutawika committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
            "  Stored in directory: /root/.cache/pip/wheels/79/d6/e7/304e0e6cb2221022c26d8161f7c23cd4f259a9e41e8bbcfabd\n",
            "Successfully built lm-eval rouge-score sqlitedict\n",
            "Installing collected packages: sqlitedict, zstandard, tcolorpy, pybind11, pyarrow-hotfix, portalocker, pathvalidate, mbstrdecoder, jsonlines, dill, colorama, typepy, tqdm-multiprocess, sacrebleu, rouge-score, responses, multiprocess, accelerate, datasets, DataProperty, tabledata, peft, evaluate, pytablewriter, lm-eval\n",
            "Successfully installed DataProperty-1.0.1 accelerate-0.24.1 colorama-0.4.6 datasets-2.15.0 dill-0.3.7 evaluate-0.4.1 jsonlines-4.0.0 lm-eval-1.0.0 mbstrdecoder-1.1.3 multiprocess-0.70.15 pathvalidate-3.2.0 peft-0.6.2 portalocker-2.8.2 pyarrow-hotfix-0.6 pybind11-2.11.1 pytablewriter-1.2.0 responses-0.18.0 rouge-score-0.1.2 sacrebleu-2.3.2 sqlitedict-2.1.0 tabledata-1.3.3 tcolorpy-0.1.4 tqdm-multiprocess-0.0.11 typepy-1.3.2 zstandard-0.22.0\n"
          ]
        }
      ],
      "source": [
        "# Install LM-Eval\n",
        "!pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@big-refactor"
      ]
    },
    {
      "cell_type": "code",
218
      "execution_count": 2,
lintangsutawika's avatar
lintangsutawika committed
219
220
221
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
lintangsutawika's avatar
lintangsutawika committed
222
          "height": 0,
lintangsutawika's avatar
lintangsutawika committed
223
          "referenced_widgets": [
lintangsutawika's avatar
lintangsutawika committed
224
225
226
227
228
229
230
231
232
233
234
            "a1d3a8aa016544a78e8821c8f6199e06",
            "f61ed33fad754146bdd2ac9db1ba1c48",
            "bfa0af6aeff344c6845e1080a878e92e",
            "fd1ad9e0367d4004aae853b91c3a7617",
            "6b2d90209ec14230b3d58a74ac9b83bf",
            "a73f357065d34d7baf0453ae4a8d75e2",
            "46f521b73fd943c081c648fd873ebc0a",
            "7c5689bc13684db8a22681f41863dddd",
            "48763b6233374554ae76035c0483066f",
            "4986a21eb560448fa79f4b25cde48951",
            "aed3acd2f2d74003b44079c333a0698e"
lintangsutawika's avatar
lintangsutawika committed
235
236
237
          ]
        },
        "id": "uyO5MaKkZyah",
lintangsutawika's avatar
lintangsutawika committed
238
        "outputId": "d46e8096-5086-4e49-967e-ea33d4a2a335"
lintangsutawika's avatar
lintangsutawika committed
239
240
241
242
243
      },
      "outputs": [
        {
          "data": {
            "application/vnd.jupyter.widget-view+json": {
lintangsutawika's avatar
lintangsutawika committed
244
              "model_id": "a1d3a8aa016544a78e8821c8f6199e06",
lintangsutawika's avatar
lintangsutawika committed
245
              "version_major": 2,
246
247
248
249
250
              "version_minor": 0
            },
            "text/plain": [
              "Downloading builder script:   0%|          | 0.00/5.67k [00:00<?, ?B/s]"
            ]
lintangsutawika's avatar
lintangsutawika committed
251
          },
252
253
          "metadata": {},
          "output_type": "display_data"
lintangsutawika's avatar
lintangsutawika committed
254
        }
255
256
257
      ],
      "source": [
        "from lm_eval import api"
lintangsutawika's avatar
lintangsutawika committed
258
259
260
261
      ]
    },
    {
      "cell_type": "markdown",
262
263
264
      "metadata": {
        "id": "8rfUeX6n_wkK"
      },
lintangsutawika's avatar
lintangsutawika committed
265
      "source": [
266
        "## Create new evaluation tasks with config-based tasks\n",
lintangsutawika's avatar
lintangsutawika committed
267
        "\n",
268
        "Even within the same task, many works have reported numbers based on different choices of evaluation. Some report on the test sets, validation sets, or even subset of the training sets. Others have specialized prompts and verbalizers. We introduce YAMLs to allow users to easily make different variations. By leveraging the YAML configs to configure evaluations, the refactored LM-Eval takes the methods of the `Task` object and makes them configurable by setting the appropriate attributes in the config file. There, users can set the tasks they want by setting the name of the HF dataset (local tasks are also possible), the dataset splits used, and much more. Key configurations relating to prompting, such as `doc_to_text`, previously implemented as a method of the same name, are now configurable with jinja2 to allow high-level scripting to transform a HF dataset to text string as input to the model.\n",
lintangsutawika's avatar
lintangsutawika committed
269
        "\n"
270
      ]
lintangsutawika's avatar
lintangsutawika committed
271
272
273
274
275
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "HYFUhhfOSJKe"
276
277
      },
      "source": [
278
279
280
        "A core-feature to LM-Eval is to configure tasks with YAML configs. With configs, you can fill preset fields to easily set up a task.\n",
        "\n",
        "Here, we write a demo YAML config for a multiple-choice evaluation of BoolQ:"
281
      ]
lintangsutawika's avatar
lintangsutawika committed
282
283
284
    },
    {
      "cell_type": "code",
285
286
287
288
289
      "execution_count": 3,
      "metadata": {
        "id": "bg3dGROW-V39"
      },
      "outputs": [],
lintangsutawika's avatar
lintangsutawika committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
      "source": [
        "YAML_boolq_string = '''\n",
        "task: demo_boolq\n",
        "dataset_path: super_glue\n",
        "dataset_name: boolq\n",
        "output_type: multiple_choice\n",
        "training_split: train\n",
        "validation_split: validation\n",
        "doc_to_text: \"{{passage}}\\nQuestion: {{question}}?\\nAnswer:\"\n",
        "doc_to_target: label\n",
        "doc_to_choice: [\"no\", \"yes\"]\n",
        "should_decontaminate: true\n",
        "doc_to_decontamination_query: passage\n",
        "metric_list:\n",
        "  - metric: acc\n",
        "'''\n",
        "with open('boolq.yaml', 'w') as f:\n",
        "    f.write(YAML_boolq_string)"
308
      ]
lintangsutawika's avatar
lintangsutawika committed
309
    },
lintangsutawika's avatar
lintangsutawika committed
310
    {
311
      "cell_type": "markdown",
lintangsutawika's avatar
lintangsutawika committed
312
      "metadata": {},
313
314
315
      "source": [
        "And we can now run evaluation on this task, by pointing to the config file we've just created:"
      ]
lintangsutawika's avatar
lintangsutawika committed
316
    },
lintangsutawika's avatar
lintangsutawika committed
317
318
    {
      "cell_type": "code",
319
      "execution_count": 4,
lintangsutawika's avatar
lintangsutawika committed
320
      "metadata": {
lintangsutawika's avatar
lintangsutawika committed
321
        "id": "LOUHK7PtQfq4"
lintangsutawika's avatar
lintangsutawika committed
322
323
324
325
      },
      "outputs": [
        {
          "name": "stdout",
326
          "output_type": "stream",
lintangsutawika's avatar
lintangsutawika committed
327
          "text": [
lintangsutawika's avatar
lintangsutawika committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
            "2023-11-29:11:54:55,156 INFO     [utils.py:160] NumExpr defaulting to 2 threads.\n",
            "2023-11-29 11:54:55.942051: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
            "2023-11-29 11:54:55.942108: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
            "2023-11-29 11:54:55.942142: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
            "2023-11-29 11:54:57.066802: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
            "2023-11-29:11:55:00,954 INFO     [__main__.py:132] Verbosity set to INFO\n",
            "2023-11-29:11:55:11,038 WARNING  [__main__.py:138]  --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
            "2023-11-29:11:55:11,038 INFO     [__main__.py:143] Including path: ./\n",
            "2023-11-29:11:55:11,046 INFO     [__main__.py:205] Selected Tasks: ['demo_boolq']\n",
            "2023-11-29:11:55:11,047 WARNING  [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
            "2023-11-29:11:55:11,110 INFO     [huggingface.py:120] Using device 'cuda'\n",
            "config.json: 100% 571/571 [00:00<00:00, 2.87MB/s]\n",
            "model.safetensors: 100% 5.68G/5.68G [00:32<00:00, 173MB/s]\n",
            "tokenizer_config.json: 100% 396/396 [00:00<00:00, 2.06MB/s]\n",
            "tokenizer.json: 100% 2.11M/2.11M [00:00<00:00, 11.6MB/s]\n",
            "special_tokens_map.json: 100% 99.0/99.0 [00:00<00:00, 555kB/s]\n",
            "2023-11-29:11:56:18,658 WARNING  [task.py:614] [Task: demo_boolq] metric acc is defined, but aggregation is not. using default aggregation=mean\n",
            "2023-11-29:11:56:18,658 WARNING  [task.py:626] [Task: demo_boolq] metric acc is defined, but higher_is_better is not. using default higher_is_better=True\n",
            "Downloading builder script: 100% 30.7k/30.7k [00:00<00:00, 59.0MB/s]\n",
            "Downloading metadata: 100% 38.7k/38.7k [00:00<00:00, 651kB/s]\n",
            "Downloading readme: 100% 14.8k/14.8k [00:00<00:00, 37.3MB/s]\n",
            "Downloading data: 100% 4.12M/4.12M [00:00<00:00, 55.1MB/s]\n",
            "Generating train split: 100% 9427/9427 [00:00<00:00, 15630.89 examples/s]\n",
            "Generating validation split: 100% 3270/3270 [00:00<00:00, 20002.56 examples/s]\n",
            "Generating test split: 100% 3245/3245 [00:00<00:00, 20866.19 examples/s]\n",
            "2023-11-29:11:56:22,315 INFO     [task.py:355] Building contexts for task on rank 0...\n",
            "2023-11-29:11:56:22,322 INFO     [evaluator.py:319] Running loglikelihood requests\n",
            "100% 20/20 [00:04<00:00,  4.37it/s]\n",
            "fatal: not a git repository (or any of the parent directories): .git\n",
            "hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
            "|  Tasks   |Version|Filter|n-shot|Metric|Value|   |Stderr|\n",
            "|----------|-------|------|-----:|------|----:|---|-----:|\n",
            "|demo_boolq|Yaml   |none  |     0|acc   |    1|±  |     0|\n",
            "\n"
lintangsutawika's avatar
lintangsutawika committed
362
363
          ]
        }
364
365
366
367
368
369
370
371
      ],
      "source": [
        "!lm_eval \\\n",
        "    --model hf \\\n",
        "    --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
        "    --include_path ./ \\\n",
        "    --tasks demo_boolq \\\n",
        "    --limit 10\n"
lintangsutawika's avatar
lintangsutawika committed
372
373
374
375
      ]
    },
    {
      "cell_type": "markdown",
376
377
378
      "metadata": {
        "id": "LOUHK7PtQfq4"
      },
lintangsutawika's avatar
lintangsutawika committed
379
      "source": [
380
        "Often, tasks are part of a larger group used to measure different capabilities. The dynamism of the field today means new dimensions of evaluation can come about which would mix and match new and older tasks alike. In LM-Eval, We can also group tasks and call that the group name to evaluate on a set of tasks easily. In this instance, let's evaluate the group `yes_or_no_tasks` which comprise of the tasks `demo_boolq` and `demo_cola`; tasks which are multiple choice tasks with options `yes` and `no` as the name suggests.\n",
lintangsutawika's avatar
lintangsutawika committed
381
382
383
384
385
386
        "\n",
        "<!-- making new groups is easier than ever, allowing user to work bottom-up by makiing individual tasks and linking them to a group or Top-Down, making a new group by listing existing tasks.\n",
        "\n",
        "We also show the aggregate across samples besides only showing the aggregation between subtasks. This may come in handy when certain groups want to be aggregated as a single task. -->\n",
        "\n",
        "\n"
387
      ]
lintangsutawika's avatar
lintangsutawika committed
388
389
390
    },
    {
      "cell_type": "code",
391
392
393
394
395
      "execution_count": 5,
      "metadata": {
        "id": "fthNg3ywO-kA"
      },
      "outputs": [],
lintangsutawika's avatar
lintangsutawika committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
      "source": [
        "YAML_cola_string = '''\n",
        "group: yes_or_no_tasks\n",
        "task: demo_cola\n",
        "dataset_path: glue\n",
        "dataset_name: cola\n",
        "output_type: multiple_choice\n",
        "training_split: train\n",
        "validation_split: validation\n",
        "doc_to_text: \"{{sentence}}\\nQuestion: Does this sentence make sense?\\nAnswer:\"\n",
        "doc_to_target: label\n",
        "doc_to_choice: [\"no\", \"yes\"]\n",
        "should_decontaminate: true\n",
        "doc_to_decontamination_query: sentence\n",
        "metric_list:\n",
        "  - metric: acc\n",
        "'''\n",
        "with open('cola.yaml', 'w') as f:\n",
        "    f.write(YAML_cola_string)"
415
      ]
lintangsutawika's avatar
lintangsutawika committed
416
417
418
    },
    {
      "cell_type": "code",
419
      "execution_count": 6,
lintangsutawika's avatar
lintangsutawika committed
420
      "metadata": {
lintangsutawika's avatar
lintangsutawika committed
421
        "id": "XceRKCuuDtbn"
lintangsutawika's avatar
lintangsutawika committed
422
423
424
425
      },
      "outputs": [
        {
          "name": "stdout",
426
          "output_type": "stream",
lintangsutawika's avatar
lintangsutawika committed
427
          "text": [
lintangsutawika's avatar
lintangsutawika committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
            "2023-11-29:11:56:33,016 INFO     [utils.py:160] NumExpr defaulting to 2 threads.\n",
            "2023-11-29 11:56:33.852995: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
            "2023-11-29 11:56:33.853050: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
            "2023-11-29 11:56:33.853087: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
            "2023-11-29 11:56:35.129047: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
            "2023-11-29:11:56:38,546 INFO     [__main__.py:132] Verbosity set to INFO\n",
            "2023-11-29:11:56:47,509 WARNING  [__main__.py:138]  --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
            "2023-11-29:11:56:47,509 INFO     [__main__.py:143] Including path: ./\n",
            "2023-11-29:11:56:47,517 INFO     [__main__.py:205] Selected Tasks: ['yes_or_no_tasks']\n",
            "2023-11-29:11:56:47,520 WARNING  [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
            "2023-11-29:11:56:47,550 INFO     [huggingface.py:120] Using device 'cuda'\n",
            "2023-11-29:11:57:08,743 WARNING  [task.py:614] [Task: demo_cola] metric acc is defined, but aggregation is not. using default aggregation=mean\n",
            "2023-11-29:11:57:08,743 WARNING  [task.py:626] [Task: demo_cola] metric acc is defined, but higher_is_better is not. using default higher_is_better=True\n",
            "Downloading builder script: 100% 28.8k/28.8k [00:00<00:00, 52.7MB/s]\n",
            "Downloading metadata: 100% 28.7k/28.7k [00:00<00:00, 51.9MB/s]\n",
            "Downloading readme: 100% 27.9k/27.9k [00:00<00:00, 48.0MB/s]\n",
            "Downloading data: 100% 377k/377k [00:00<00:00, 12.0MB/s]\n",
            "Generating train split: 100% 8551/8551 [00:00<00:00, 19744.58 examples/s]\n",
            "Generating validation split: 100% 1043/1043 [00:00<00:00, 27057.01 examples/s]\n",
            "Generating test split: 100% 1063/1063 [00:00<00:00, 22705.17 examples/s]\n",
            "2023-11-29:11:57:11,698 INFO     [task.py:355] Building contexts for task on rank 0...\n",
            "2023-11-29:11:57:11,704 INFO     [evaluator.py:319] Running loglikelihood requests\n",
            "100% 20/20 [00:03<00:00,  5.15it/s]\n",
lintangsutawika's avatar
lintangsutawika committed
451
            "fatal: not a git repository (or any of the parent directories): .git\n",
lintangsutawika's avatar
lintangsutawika committed
452
453
454
455
456
            "hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
            "|     Tasks     |Version|Filter|n-shot|Metric|Value|   |Stderr|\n",
            "|---------------|-------|------|-----:|------|----:|---|-----:|\n",
            "|yes_or_no_tasks|N/A    |none  |     0|acc   |  0.7|±  |0.1528|\n",
            "| - demo_cola   |Yaml   |none  |     0|acc   |  0.7|±  |0.1528|\n",
lintangsutawika's avatar
lintangsutawika committed
457
            "\n",
lintangsutawika's avatar
lintangsutawika committed
458
459
460
            "|    Groups     |Version|Filter|n-shot|Metric|Value|   |Stderr|\n",
            "|---------------|-------|------|-----:|------|----:|---|-----:|\n",
            "|yes_or_no_tasks|N/A    |none  |     0|acc   |  0.7|±  |0.1528|\n",
lintangsutawika's avatar
lintangsutawika committed
461
462
463
            "\n"
          ]
        }
464
465
466
467
468
469
470
471
472
473
474
      ],
      "source": [
        "# !accelerate launch --no_python\n",
        "!lm_eval \\\n",
        "    --model hf \\\n",
        "    --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
        "    --include_path ./ \\\n",
        "    --tasks yes_or_no_tasks \\\n",
        "    --limit 10 \\\n",
        "    --output output/yes_or_no_tasks/ \\\n",
        "    --log_samples\n"
lintangsutawika's avatar
lintangsutawika committed
475
476
477
478
      ]
    },
    {
      "cell_type": "markdown",
479
480
481
      "metadata": {
        "id": "XceRKCuuDtbn"
      },
lintangsutawika's avatar
lintangsutawika committed
482
483
484
485
      "source": [
        "## Edit Prompt Templates Quickly\n",
        "\n",
        "The following is a yaml made to evaluate the specific subtask of `high_school_geography` from MMLU. It uses the standard prompt where the we choose the letters from the options with most likelihood as the model's prediction."
486
      ]
lintangsutawika's avatar
lintangsutawika committed
487
488
489
    },
    {
      "cell_type": "code",
490
491
492
493
494
      "execution_count": 7,
      "metadata": {
        "id": "GTFvdt9kSlBG"
      },
      "outputs": [],
lintangsutawika's avatar
lintangsutawika committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
      "source": [
        "YAML_mmlu_geo_string = '''\n",
        "group: mmlu\n",
        "task: demo_mmlu_high_school_geography\n",
        "dataset_path: cais/mmlu\n",
        "dataset_name: high_school_geography\n",
        "description: \"The following are multiple choice questions (with answers) about high school geography.\\n\\n\"\n",
        "test_split: test\n",
        "fewshot_split: dev\n",
        "fewshot_config:\n",
        "  sampler: first_n\n",
        "output_type: multiple_choice\n",
        "doc_to_text: \"{{question.strip()}}\\nA. {{choices[0]}}\\nB. {{choices[1]}}\\nC. {{choices[2]}}\\nD. {{choices[3]}}\\nAnswer:\"\n",
        "doc_to_choice: [\"A\", \"B\", \"C\", \"D\"]\n",
        "doc_to_target: answer\n",
        "metric_list:\n",
        "  - metric: acc\n",
        "    aggregation: mean\n",
        "    higher_is_better: true\n",
        "  - metric: acc_norm\n",
        "    aggregation: mean\n",
        "    higher_is_better: true\n",
        "'''\n",
        "with open('mmlu_high_school_geography.yaml', 'w') as f:\n",
        "    f.write(YAML_mmlu_geo_string)\n"
520
      ]
lintangsutawika's avatar
lintangsutawika committed
521
522
523
    },
    {
      "cell_type": "code",
524
      "execution_count": 8,
lintangsutawika's avatar
lintangsutawika committed
525
      "metadata": {
lintangsutawika's avatar
lintangsutawika committed
526
        "id": "jyKOfCsKb-xy"
lintangsutawika's avatar
lintangsutawika committed
527
528
529
530
      },
      "outputs": [
        {
          "name": "stdout",
531
          "output_type": "stream",
lintangsutawika's avatar
lintangsutawika committed
532
          "text": [
lintangsutawika's avatar
lintangsutawika committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
            "2023-11-29:11:57:23,598 INFO     [utils.py:160] NumExpr defaulting to 2 threads.\n",
            "2023-11-29 11:57:24.719750: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
            "2023-11-29 11:57:24.719806: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
            "2023-11-29 11:57:24.719847: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
            "2023-11-29 11:57:26.656125: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
            "2023-11-29:11:57:31,563 INFO     [__main__.py:132] Verbosity set to INFO\n",
            "2023-11-29:11:57:40,541 WARNING  [__main__.py:138]  --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
            "2023-11-29:11:57:40,541 INFO     [__main__.py:143] Including path: ./\n",
            "2023-11-29:11:57:40,558 INFO     [__main__.py:205] Selected Tasks: ['demo_mmlu_high_school_geography']\n",
            "2023-11-29:11:57:40,559 WARNING  [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
            "2023-11-29:11:57:40,589 INFO     [huggingface.py:120] Using device 'cuda'\n",
            "Downloading builder script: 100% 5.84k/5.84k [00:00<00:00, 17.7MB/s]\n",
            "Downloading metadata: 100% 106k/106k [00:00<00:00, 892kB/s] \n",
            "Downloading readme: 100% 39.7k/39.7k [00:00<00:00, 631kB/s]\n",
            "Downloading data: 100% 166M/166M [00:01<00:00, 89.0MB/s]\n",
            "Generating auxiliary_train split: 100% 99842/99842 [00:07<00:00, 12536.83 examples/s]\n",
            "Generating test split: 100% 198/198 [00:00<00:00, 1439.20 examples/s]\n",
            "Generating validation split: 100% 22/22 [00:00<00:00, 4181.76 examples/s]\n",
            "Generating dev split: 100% 5/5 [00:00<00:00, 36.25 examples/s]\n",
            "2023-11-29:11:58:09,798 INFO     [task.py:355] Building contexts for task on rank 0...\n",
            "2023-11-29:11:58:09,822 INFO     [evaluator.py:319] Running loglikelihood requests\n",
            "100% 40/40 [00:05<00:00,  7.86it/s]\n",
lintangsutawika's avatar
lintangsutawika committed
555
            "fatal: not a git repository (or any of the parent directories): .git\n",
lintangsutawika's avatar
lintangsutawika committed
556
557
558
559
560
            "hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
            "|             Tasks             |Version|Filter|n-shot| Metric |Value|   |Stderr|\n",
            "|-------------------------------|-------|------|-----:|--------|----:|---|-----:|\n",
            "|demo_mmlu_high_school_geography|Yaml   |none  |     0|acc     |  0.3|±  |0.1528|\n",
            "|                               |       |none  |     0|acc_norm|  0.3|±  |0.1528|\n",
lintangsutawika's avatar
lintangsutawika committed
561
562
563
            "\n"
          ]
        }
564
565
566
567
568
569
570
571
572
573
574
      ],
      "source": [
        "# !accelerate launch --no_python\n",
        "!lm_eval \\\n",
        "    --model hf \\\n",
        "    --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
        "    --include_path ./ \\\n",
        "    --tasks demo_mmlu_high_school_geography \\\n",
        "    --limit 10 \\\n",
        "    --output output/mmlu_high_school_geography/ \\\n",
        "    --log_samples"
lintangsutawika's avatar
lintangsutawika committed
575
576
577
578
      ]
    },
    {
      "cell_type": "markdown",
579
580
581
      "metadata": {
        "id": "jyKOfCsKb-xy"
      },
lintangsutawika's avatar
lintangsutawika committed
582
583
584
      "source": [
        "We could also evaluate this task in a different way. For example, instead of observing the loglikelihood of the letters, we can instead evaluate on the choices themselves as the continuation. This is done by simply changing `doc_to_choice` from a list of letters to the corresponding `choices` field from the HF dataset. We write `\"{{choices}}\"` so that the string field is interpreted as jinja string that acquires the list from the HF dataset directly.\n",
        "\n",
lintangsutawika's avatar
lintangsutawika committed
585
        "Another convenient feature here is since we're only modifying the `doc_to_choice` and the rest of config is the same as the task above, we can use the above configuration as a template by using `include: mmlu_high_school_geography.yaml` to load the config from that file. We'll need to add a unique task name as to not colide with the existing yaml config we're including. For this case we'll simply name this one `mmlu_high_school_geography_continuation`. `doc_to_text` is added here just for sake of clarity."
586
      ]
lintangsutawika's avatar
lintangsutawika committed
587
588
589
    },
    {
      "cell_type": "code",
590
591
592
593
594
      "execution_count": 9,
      "metadata": {
        "id": "lqElwU54TaK-"
      },
      "outputs": [],
lintangsutawika's avatar
lintangsutawika committed
595
596
597
598
599
600
601
602
603
      "source": [
        "YAML_mmlu_geo_string = '''\n",
        "include: mmlu_high_school_geography.yaml\n",
        "task: demo_mmlu_high_school_geography_continuation\n",
        "doc_to_text: \"{{question.strip()}}\\nA. {{choices[0]}}\\nB. {{choices[1]}}\\nC. {{choices[2]}}\\nD. {{choices[3]}}\\nAnswer:\"\n",
        "doc_to_choice: \"{{choices}}\"\n",
        "'''\n",
        "with open('mmlu_high_school_geography_continuation.yaml', 'w') as f:\n",
        "    f.write(YAML_mmlu_geo_string)\n"
604
      ]
lintangsutawika's avatar
lintangsutawika committed
605
606
607
    },
    {
      "cell_type": "code",
608
609
      "execution_count": 10,
      "metadata": {
lintangsutawika's avatar
lintangsutawika committed
610
        "id": "-_CVnDirdy7j"
611
612
613
614
615
616
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
lintangsutawika's avatar
lintangsutawika committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
            "2023-11-29:11:58:21,284 INFO     [utils.py:160] NumExpr defaulting to 2 threads.\n",
            "2023-11-29 11:58:22.850159: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
            "2023-11-29 11:58:22.850219: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
            "2023-11-29 11:58:22.850254: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
            "2023-11-29 11:58:24.948103: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
            "2023-11-29:11:58:28,460 INFO     [__main__.py:132] Verbosity set to INFO\n",
            "2023-11-29:11:58:37,935 WARNING  [__main__.py:138]  --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
            "2023-11-29:11:58:37,935 INFO     [__main__.py:143] Including path: ./\n",
            "2023-11-29:11:58:37,969 INFO     [__main__.py:205] Selected Tasks: ['demo_mmlu_high_school_geography_continuation']\n",
            "2023-11-29:11:58:37,972 WARNING  [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
            "2023-11-29:11:58:38,008 INFO     [huggingface.py:120] Using device 'cuda'\n",
            "2023-11-29:11:58:59,758 INFO     [task.py:355] Building contexts for task on rank 0...\n",
            "2023-11-29:11:58:59,777 INFO     [evaluator.py:319] Running loglikelihood requests\n",
            "100% 40/40 [00:02<00:00, 16.23it/s]\n",
631
            "fatal: not a git repository (or any of the parent directories): .git\n",
lintangsutawika's avatar
lintangsutawika committed
632
633
634
635
636
            "hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
            "|                   Tasks                    |Version|Filter|n-shot| Metric |Value|   |Stderr|\n",
            "|--------------------------------------------|-------|------|-----:|--------|----:|---|-----:|\n",
            "|demo_mmlu_high_school_geography_continuation|Yaml   |none  |     0|acc     |  0.1|±  |0.1000|\n",
            "|                                            |       |none  |     0|acc_norm|  0.2|±  |0.1333|\n",
637
638
639
640
            "\n"
          ]
        }
      ],
lintangsutawika's avatar
lintangsutawika committed
641
642
643
644
645
646
647
648
649
650
      "source": [
        "# !accelerate launch --no_python\n",
        "!lm_eval \\\n",
        "    --model hf \\\n",
        "    --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
        "    --include_path ./ \\\n",
        "    --tasks demo_mmlu_high_school_geography_continuation \\\n",
        "    --limit 10 \\\n",
        "    --output output/mmlu_high_school_geography_continuation/ \\\n",
        "    --log_samples\n"
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "-_CVnDirdy7j"
      },
      "source": [
        "If we take a look at the samples, we can see that it is in fact evaluating the continuation based on the choices rather than the letters."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 11,
      "metadata": {
lintangsutawika's avatar
lintangsutawika committed
666
        "id": "duBDqC6PAdjL"
667
668
669
670
671
672
673
674
675
676
677
678
      },
      "outputs": [
        {
          "data": {
            "application/javascript": "\n      ((filepath) => {{\n        if (!google.colab.kernel.accessAllowed) {{\n          return;\n        }}\n        google.colab.files.view(filepath);\n      }})(\"/content/output/mmlu_high_school_geography_continuation/pretrained__EleutherAI__pythia-2.8b_demo_mmlu_high_school_geography_continuation.jsonl\")",
            "text/plain": [
              "<IPython.core.display.Javascript object>"
            ]
          },
          "metadata": {},
          "output_type": "display_data"
        }
lintangsutawika's avatar
lintangsutawika committed
679
      ],
680
681
682
683
684
685
686
687
      "source": [
        "from google.colab import files\n",
        "files.view(\"output/mmlu_high_school_geography_continuation/pretrained__EleutherAI__pythia-2.8b_demo_mmlu_high_school_geography_continuation.jsonl\")\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
lintangsutawika's avatar
lintangsutawika committed
688
        "id": "6p0-KPwAgK5j"
689
690
691
692
693
694
695
696
      },
      "source": [
        "## Closer Look at YAML Fields\n",
        "\n",
        "To prepare a task we can simply fill in a YAML config with the relevant information.\n",
        "\n",
        "`output_type`\n",
        "The current provided evaluation types comprise of the following:\n",
697
698
        "1.   `loglikelihood`: Evaluates the loglikelihood of a continuation, conditioned on some input string.\n",
        "2.   `loglikelihood_rolling`: evaluate the loglikelihood of producing a string, conditioned on the empty string. (Used for perplexity evaluations)\n",
699
        "3.   `multiple_choice`: Evaluates loglikelihood among the a number of choices predicted by the model.\n",
lintangsutawika's avatar
lintangsutawika committed
700
        "4.   `greedy_until`: Model outputs greedy generation (can be configured to to use beam search and other generation-related parameters)\n",
701
702
703
        "\n",
        "The core prompt revolves around 3 fields.\n",
        "1. `doc_to_text`: Denotes the prompt template that will be used as input to the model.\n",
704
705
        "2. `doc_to_choice`: Available choices that will be used as continuation for the model. This is used when the `output_type` is `multiple_choice`, and otherwise can be left as `None`.\n",
        "3. `doc_to_target`: When `output_type` is `multiple_choice`, this can be an index that corresponds to the correct answer, or the answer string itself (must be a subset of `doc_to_choice`). For other tasks, this is expected to be a string. You can fill this field with a feature name from the HF dataset so long as the resulting feature follows the conditioned described.\n",
706
        "\n",
707
        "These three fields can be expressed as strings, column names from the source dataset, or as Jinja2 templates that can use fields from the source dataset as variables.\n"
708
709
710
711
712
713
714
715
716
717
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6p0-KPwAgK5j"
      },
      "source": [
        "## What if Jinja is not Sufficient?\n",
        "\n",
718
        "There can be times where the Jinja2 templating language is not enough to make the prompt we had in mind. There are a few ways to circumvent this limitation:\n",
719
        "\n",
720
721
722
723
724
725
726
727
728
        "1. Use `!function` operator for the prompt-related fields to pass a python function that takes as input the dataset row, and will output the prompt template component.\n",
        "2. Perform a transformation on the dataset beforehand."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Below, we show an example of using `!function` to create `doc_to_text` from a python function:"
729
730
731
732
733
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 12,
lintangsutawika's avatar
lintangsutawika committed
734
735
736
737
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
738
        "id": "DYZ5c0JhR1lJ",
lintangsutawika's avatar
lintangsutawika committed
739
        "outputId": "ca945235-fb9e-4f17-8bfa-78e7d6ec1490"
740
741
742
743
744
745
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
lintangsutawika's avatar
lintangsutawika committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
            "2023-11-29:11:59:08,312 INFO     [utils.py:160] NumExpr defaulting to 2 threads.\n",
            "2023-11-29 11:59:09.348327: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
            "2023-11-29 11:59:09.348387: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
            "2023-11-29 11:59:09.348421: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
            "2023-11-29 11:59:10.573752: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
            "2023-11-29:11:59:14,044 INFO     [__main__.py:132] Verbosity set to INFO\n",
            "2023-11-29:11:59:23,654 WARNING  [__main__.py:138]  --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
            "2023-11-29:11:59:23,654 INFO     [__main__.py:143] Including path: ./\n",
            "2023-11-29:11:59:23,678 INFO     [__main__.py:205] Selected Tasks: ['demo_mmlu_high_school_geography_function_prompt']\n",
            "2023-11-29:11:59:23,679 WARNING  [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
            "2023-11-29:11:59:23,708 INFO     [huggingface.py:120] Using device 'cuda'\n",
            "2023-11-29:11:59:44,516 INFO     [task.py:355] Building contexts for task on rank 0...\n",
            "2023-11-29:11:59:44,524 INFO     [evaluator.py:319] Running loglikelihood requests\n",
            "100% 40/40 [00:02<00:00, 15.41it/s]\n",
760
            "fatal: not a git repository (or any of the parent directories): .git\n",
lintangsutawika's avatar
lintangsutawika committed
761
762
763
764
765
            "hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
            "|                     Tasks                     |Version|Filter|n-shot| Metric |Value|   |Stderr|\n",
            "|-----------------------------------------------|-------|------|-----:|--------|----:|---|-----:|\n",
            "|demo_mmlu_high_school_geography_function_prompt|Yaml   |none  |     0|acc     |  0.1|±  |0.1000|\n",
            "|                                               |       |none  |     0|acc_norm|  0.2|±  |0.1333|\n",
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
            "\n"
          ]
        }
      ],
      "source": [
        "YAML_mmlu_geo_string = '''\n",
        "include: mmlu_high_school_geography.yaml\n",
        "task: demo_mmlu_high_school_geography_function_prompt\n",
        "doc_to_text: !function utils.doc_to_text\n",
        "doc_to_choice: \"{{choices}}\"\n",
        "'''\n",
        "with open('demo_mmlu_high_school_geography_function_prompt.yaml', 'w') as f:\n",
        "    f.write(YAML_mmlu_geo_string)\n",
        "\n",
        "DOC_TO_TEXT = '''\n",
        "def doc_to_text(x):\n",
        "    question = x[\"question\"].strip()\n",
        "    choices = x[\"choices\"]\n",
        "    option_a = choices[0]\n",
        "    option_b = choices[1]\n",
        "    option_c = choices[2]\n",
        "    option_d = choices[3]\n",
        "    return f\"{question}\\\\nA. {option_a}\\\\nB. {option_b}\\\\nC. {option_c}\\\\nD. {option_d}\\\\nAnswer:\"\n",
        "'''\n",
        "with open('utils.py', 'w') as f:\n",
        "    f.write(DOC_TO_TEXT)\n",
        "\n",
        "!lm_eval \\\n",
        "    --model hf \\\n",
        "    --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
        "    --include_path ./ \\\n",
        "    --tasks demo_mmlu_high_school_geography_function_prompt \\\n",
        "    --limit 10 \\\n",
        "    --output output/demo_mmlu_high_school_geography_function_prompt/ \\\n",
        "    --log_samples\n"
      ]
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Next, we'll also show how to do this via preprocessing the dataset as necessary using the `process_docs` config field:\n",
        "\n",
        "We will write a function that will modify each document in our evaluation dataset's split to add a field that is suitable for us to use in `doc_to_text`."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "YAML_mmlu_geo_string = '''\n",
        "include: mmlu_high_school_geography.yaml\n",
        "task: demo_mmlu_high_school_geography_function_prompt_2\n",
        "process_docs: !function utils_process_docs.process_docs\n",
        "doc_to_text: \"{{input}}\"\n",
        "doc_to_choice: \"{{choices}}\"\n",
        "'''\n",
        "with open('demo_mmlu_high_school_geography_process_docs.yaml', 'w') as f:\n",
        "    f.write(YAML_mmlu_geo_string)\n",
        "\n",
        "DOC_TO_TEXT = '''\n",
        "def process_docs(dataset):\n",
        "    def _process_doc(x):\n",
        "        question = x[\"question\"].strip()\n",
        "        choices = x[\"choices\"]\n",
        "        option_a = choices[0]\n",
        "        option_b = choices[1]\n",
        "        option_c = choices[2]\n",
        "        option_d = choices[3]\n",
        "        doc[\"input\"] = f\"{question}\\\\nA. {option_a}\\\\nB. {option_b}\\\\nC. {option_c}\\\\nD. {option_d}\\\\nAnswer:\"\n",
        "        return out_doc\n",
        "\n",
        "    return dataset.map(_process_doc)\n",
        "'''\n",
        "\n",
        "with open('utils_process_docs.py', 'w') as f:\n",
        "    f.write(DOC_TO_TEXT)\n",
        "\n",
        "!lm_eval \\\n",
        "    --model hf \\\n",
        "    --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
        "    --include_path ./ \\\n",
        "    --tasks demo_mmlu_high_school_geography_function_prompt_2 \\\n",
        "    --limit 10 \\\n",
        "    --output output/demo_mmlu_high_school_geography_function_prompt_2/ \\\n",
        "    --log_samples\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "We hope that this explainer gives you a sense of what can be done with and how to work with LM-Evaluation-Harnes v0.4.0 ! \n",
        "\n",
        "For more information, check out our documentation pages in the `docs/` folder, and if you have questions, please raise them in GitHub issues, or in #lm-thunderdome or #release-discussion on the EleutherAI discord server."
      ]
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "collapsed_sections": [
        "zAov81vTbL2K"
      ],
      "gpuType": "T4",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    },
    "widgets": {
      "application/vnd.jupyter.widget-state+json": {
lintangsutawika's avatar
lintangsutawika committed
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
        "46f521b73fd943c081c648fd873ebc0a": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "DescriptionStyleModel",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "DescriptionStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "description_width": ""
          }
        },
        "48763b6233374554ae76035c0483066f": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "ProgressStyleModel",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "ProgressStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "bar_color": null,
            "description_width": ""
          }
        },
        "4986a21eb560448fa79f4b25cde48951": {
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
lintangsutawika's avatar
lintangsutawika committed
967
        "6b2d90209ec14230b3d58a74ac9b83bf": {
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
lintangsutawika's avatar
lintangsutawika committed
1019
        "7c5689bc13684db8a22681f41863dddd": {
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
lintangsutawika's avatar
lintangsutawika committed
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
        "a1d3a8aa016544a78e8821c8f6199e06": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "HBoxModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HBoxModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HBoxView",
            "box_style": "",
            "children": [
              "IPY_MODEL_f61ed33fad754146bdd2ac9db1ba1c48",
              "IPY_MODEL_bfa0af6aeff344c6845e1080a878e92e",
              "IPY_MODEL_fd1ad9e0367d4004aae853b91c3a7617"
            ],
            "layout": "IPY_MODEL_6b2d90209ec14230b3d58a74ac9b83bf"
          }
        },
        "a73f357065d34d7baf0453ae4a8d75e2": {
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
lintangsutawika's avatar
lintangsutawika committed
1144
        },
lintangsutawika's avatar
lintangsutawika committed
1145
        "aed3acd2f2d74003b44079c333a0698e": {
1146
1147
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
lintangsutawika's avatar
lintangsutawika committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
          "model_name": "DescriptionStyleModel",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "DescriptionStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "description_width": ""
          }
        },
        "bfa0af6aeff344c6845e1080a878e92e": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "FloatProgressModel",
1164
1165
1166
1167
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
lintangsutawika's avatar
lintangsutawika committed
1168
            "_model_name": "FloatProgressModel",
1169
1170
1171
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
lintangsutawika's avatar
lintangsutawika committed
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
            "_view_name": "ProgressView",
            "bar_style": "success",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_7c5689bc13684db8a22681f41863dddd",
            "max": 5669,
            "min": 0,
            "orientation": "horizontal",
            "style": "IPY_MODEL_48763b6233374554ae76035c0483066f",
            "value": 5669
          }
        },
        "f61ed33fad754146bdd2ac9db1ba1c48": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "HTMLModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HTMLModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HTMLView",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_a73f357065d34d7baf0453ae4a8d75e2",
            "placeholder": "​",
            "style": "IPY_MODEL_46f521b73fd943c081c648fd873ebc0a",
            "value": "Downloading builder script: 100%"
          }
        },
        "fd1ad9e0367d4004aae853b91c3a7617": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "HTMLModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HTMLModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HTMLView",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_4986a21eb560448fa79f4b25cde48951",
            "placeholder": "​",
            "style": "IPY_MODEL_aed3acd2f2d74003b44079c333a0698e",
            "value": " 5.67k/5.67k [00:00&lt;00:00, 205kB/s]"
1224
          }
lintangsutawika's avatar
lintangsutawika committed
1225
1226
1227
        }
      }
    }
1228
1229
1230
1231
  },
  "nbformat": 4,
  "nbformat_minor": 0
}