metrics.py 15.3 KB
Newer Older
1
import logging
&'s avatar
& committed
2
import math
3
import random
4
from collections.abc import Iterable
5
from typing import List
6

Baber Abbasi's avatar
Baber Abbasi committed
7
import evaluate as hf_evaluate
8
9
10
import numpy as np
import sacrebleu
import sklearn.metrics
&'s avatar
& committed
11

12
from lm_eval.api.registry import register_aggregation, register_metric
13

lintangsutawika's avatar
lintangsutawika committed
14

15
eval_logger = logging.getLogger("lm-eval")
16

17

18
# Register Aggregations First
Baber Abbasi's avatar
Baber Abbasi committed
19
20
21
22
23
@register_aggregation("bypass")
def bypass_agg(arr):
    return 999


24
25
@register_aggregation("mean")
def mean(arr):
26
27
28
29
30
31
32
33
34
35
36
37
38
39
    if isinstance(arr[0], (list, np.ndarray)):
        return sum(arr[0]) / len(arr[0])
    else:
        return sum(arr) / len(arr)


@register_aggregation("acc_gpt")
def acc_gpt(arr):
    unzipped_list = list(zip(*arr))
    golds = unzipped_list[0]
    preds = unzipped_list[1]

    accuracy = sklearn.metrics.accuracy_score(golds, preds)
    return accuracy
40
41
42
43
44
45
46


@register_aggregation("median")
def median(arr):
    return arr[len(arr) // 2]


47
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
48
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
@register_aggregation("perplexity")
def perplexity(items):
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
64
65
66
67
68
69
70
71
72
73
@register_aggregation("f1")
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


74
75
76
77
78
79
80
81
82
83
84
85
86
@register_aggregation("squad_f1")
def squad_f1_score(items):
    gold_squad, pred_squad = [], []
    for index, (ref, pred) in enumerate(items):
        pred_dict = {'prediction_text': str(pred), 'id': str(index)}
        ref_dict = {'answers': {'answer_start': [0], 'text': [str(ref)]}, 'id': str(index)}
        gold_squad.append(ref_dict)
        pred_squad.append(pred_dict)
    squad_metric = hf_evaluate.load("squad")
    results_squad = squad_metric.compute(predictions=pred_squad, references=gold_squad)
    return results_squad['f1']/100


haileyschoelkopf's avatar
haileyschoelkopf committed
87
88
89
90
91
92
93
94
95
@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    # print(preds)
    return sklearn.metrics.matthews_corrcoef(golds, preds)


96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


Lintang Sutawika's avatar
Lintang Sutawika committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
@register_aggregation("brier_score")
def brier_score(items):  # This is a passthrough function
    gold, predictions = list(zip(*items))
    gold = list(gold)
    gold_one_hot = np.eye(np.max(gold) + 1)[gold]
    predictions = list(zip(*items))[1]
    return np.mean(np.sum((predictions - gold_one_hot) ** 2, axis=1))


@register_metric(
    metric="brier_score",
    higher_is_better=False,
    output_type=["multiple_choice"],
    aggregation="brier_score",
)
def brier_score_fn(items):  # This is a passthrough function
    return items


164
165
166
@register_metric(
    metric="acc",
    higher_is_better=True,
167
    output_type=["loglikelihood", "multiple_choice", "multiple_choice_gpt"],
168
169
170
171
172
173
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


174
175
176
177
178
179
180
181
182
183
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


184
185
186
187
188
189
190
191
192
193
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


Baber Abbasi's avatar
Baber Abbasi committed
194
exact_match = hf_evaluate.load("exact_match")
195
196


197
198
199
200
201
202
@register_metric(
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="mean",
)
203
204
def exact_match_fn(**kwargs):
    return exact_match.compute(**kwargs)
205
206


207
208
209
210
211
212
213
214
215
@register_metric(
    metric="squad",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="squad_f1"
)
def squad_fn(items):
    return items

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
255

Leo Gao's avatar
Leo Gao committed
256
def pop_stddev(arr):
257
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
258
259
260
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
261
def sample_stddev(arr):
262
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
263
264
265
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
266
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
267
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
268
269


Baber Abbasi's avatar
Baber Abbasi committed
270
271
272
273
274
275
276
277
278
279
@register_metric(
    metric="bypass",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice", "generate_until"],
    aggregation="bypass",
)
def bypass(items):
    return None


haileyschoelkopf's avatar
haileyschoelkopf committed
280
281
282
283
284
285
286
287
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
288
289
290


@register_metric(
291
    metric="f1",
292
    higher_is_better=True,
293
    output_type=["multiple_choice", "multiple_choice_gpt"],
haileyschoelkopf's avatar
haileyschoelkopf committed
294
    aggregation="f1",
295
)
296
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
297
    return items
298
299


300
301
302
@register_metric(
    metric="bleu",
    higher_is_better=True,
303
    output_type="generate_until",
304
305
306
307
308
309
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


310
311
312
@register_metric(
    metric="chrf",
    higher_is_better=True,
313
    output_type="generate_until",
314
315
316
317
318
319
320
321
322
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
323
    output_type="generate_until",
324
325
326
327
328
329
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
372
373
374
375
376
377
378
379
380
381

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
422
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
423
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
424
425
        self.f = f
        self.n = n
426

Leo Gao's avatar
Leo Gao committed
427
428
429
430
431
432
433
434
435
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
436

437
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
438
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
439

Leo Gao's avatar
Leo Gao committed
440
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
441
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
442
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
443
444
445
446
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
447
    res = []
448
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
449
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
450

Leo Gao's avatar
Leo Gao committed
451
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
452
453
    for bootstrap in tqdm(
        pool.imap(
454
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
455
456
457
458
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
459
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
460
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
461

Leo Gao's avatar
Leo Gao committed
462
    pool.close()
Leo Gao's avatar
Leo Gao committed
463
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
464
465


466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
def stderr_for_metric(metric, bootstrap_iters):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)
483
484
485
486
487
488
489
490
491
492


def pooled_sample_stderr(stderrs: List[float], sizes: List[int]):
    # Used to aggregate bootstrapped stderrs across subtasks in a group,
    # when we are weighting by the size of each subtask.
    #

    assert len(stderrs) == len(sizes)

    # formula source: https://en.wikipedia.org/wiki/Pooled_variance
493
494
    # and: https://stats.stackexchange.com/a/4841331
    # this empirically seems to match running `stderr_for_metric` on all instances
495
496
    # from the subtasks concatenated with each other.
    pooled_sample_var = (
497
        sum([(size - 1) * stderr**2 * size for size, stderr in zip(sizes, stderrs)])
498
499
    ) / (sum(sizes) - len(sizes))

500
    return np.sqrt(pooled_sample_var / sum(sizes))
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538


def combined_sample_stderr(stderrs: List[float], sizes: List[int], metrics=None):
    assert (
        metrics is not None
    ), "Need to pass a list of each subtask's metric for this stderr aggregation"
    assert len(stderrs) == len(sizes) and len(sizes) == len(metrics)

    # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1390 for more documentation.
    # This formula depends on sample means.
    # removed because it seems to give erroneously huge stderrs for groupings of tasks
    # and does not seem to match up with bootstrap-calculated stderrs for groups.

    ### don't use this unless a statistician has told you it's the right thing to do ###

    # accumulators: we'll aggregate pairwise N - 1 times
    variance = stderrs[0] ** 2
    curr_size = sizes[0]
    curr_score = metrics[0]

    for stderr, size, score in zip(stderrs[1:], sizes[1:], metrics[1:]):
        curr_score = ((curr_score * curr_size) + (score * size)) / (
            curr_size + size
        )  # NOTE: this assumes our aggregation fn is "mean"

        variance = ((curr_size - 1) * variance + (size - 1) * (stderr**2)) / (
            curr_size + size - 1
        ) + curr_size * size / ((curr_size + size) * (curr_size + size - 1)) * (
            curr_score - score
        ) ** 2

    return np.sqrt(variance)


def aggregate_subtask_metrics(metrics, sizes, weight_by_size=True):
    # A helper function that is used to aggregate
    # subtask scores cross-task.
    # TODO: does not hold for non-mean aggregations
539
    if not weight_by_size:
540
541
542
543
544
        sizes = [1] * len(sizes)

    assert len(metrics) == len(sizes)

    return sum([metric * size for metric, size in zip(metrics, sizes)]) / sum(sizes)