storycloze.py 2.96 KB
Newer Older
Anish Thite's avatar
Anish Thite committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import json
import random
from lm_eval.base import Dataset
from ..utils import sh
import csv

class StoryCloze(Dataset):
    def __init__(self):
        self.download()
    def download(self):
        #TODO: replace with Eye link
        pass

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def training_docs(self):
        pass

    def load_doc(self, filename):
        with open(filename, newline='') as file:
            filereader = csv.reader(file)
            return list(filereader)
                

    def validation_docs(self):
        return  self.load_doc("data/storycloze/cloze_test_val__winter2018-cloze_test_ALL_val - 1 - 1.csv")

    def test_docs(self):
        return self.load_doc("data/storycloze/cloze_test_test__winter2018-cloze_test_ALL_test - 1.csv")

    
    def fewshot_description(self):
Leo Gao's avatar
Leo Gao committed
40
41
        # TODO: figure out fewshot description
        return ""
Anish Thite's avatar
Anish Thite committed
42
    
43
44
45
46
47
    def doc_to_text(self, doc):
        return ' '.join([*doc[1:5]])

    def doc_to_target(self, doc):
        return " " + doc[int(doc[-1]) - 4]
Anish Thite's avatar
Anish Thite committed
48

Leo Gao's avatar
Leo Gao committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
75

Leo Gao's avatar
Leo Gao committed
76
77
78
79
80
81
82
83
    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
Anish Thite's avatar
Anish Thite committed
84

Leo Gao's avatar
Leo Gao committed
85
86
87
88
89
90
91
92
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')