squad.py 1.72 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
# REMINDER: this code needs to be rewritten for the new framework. Remove this comment when the code is fully converted.

Charles Foster's avatar
Charles Foster committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import numpy as np
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import f1_score, matthews_corrcoef
from tqdm import auto as tqdm_lib
from . common import HFTask, simple_accuracy_metric, yesno

class SQuAD(HFTask):
    DATASET_PATH = "squad_v2"
    DATASET_NAME = None

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

19
20
21
    def has_test_docs(self):
        return False

Charles Foster's avatar
Charles Foster committed
22
23
24
25
26
27
28
29
30
    def training_docs(self):
        if self.has_training_docs():
            return self.data["train"]

    def validation_docs(self):
        if self.has_validation_docs():
            return self.data["validation"]

    def fewshot_description(self):
Leo Gao's avatar
Leo Gao committed
31
        # TODO: redo description
Charles Foster's avatar
Charles Foster committed
32
33
        return "Title: The_Title_of_It\n\nBackground: A text passage as background to answer the question with.\n\nQ: Question about the passage.\n\nA: Answer."

34
35
36
37
38
39
40
41
42
43
    def doc_to_text(self, doc):
        return 'Title: ' + doc['title'] + '\n\n' + 'Background: ' + doc['context'] + '\n\n' + 'Q: ' + doc['question'] + '\n\n' + 'A: '

    def doc_to_target(self, doc):
        answer_list = doc['answers']['text']
        if len(answer_list) > 0:
            answer = answer_list[0]
        else:
            answer = 'unanswerable'
        return answer
Charles Foster's avatar
Charles Foster committed
44

45
46
47
48
49
    # TODO: Implement evaluation code

    # ***IMPORTANT***: this evaluation function needs to be written for the new framework. 
    # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
    # Remove this comment when the evaluation code is implemented.