evaluator_utils.py 21.6 KB
Newer Older
1
2
3
4
import collections
import math
import pathlib
import sys
Lintang Sutawika's avatar
Lintang Sutawika committed
5
6
7
8
9
10
11
12
13
from typing import List, Optional, Tuple, Union

from lm_eval.api.group import ConfigurableGroup
from lm_eval.api.metrics import (
    aggregate_subtask_metrics,
    pooled_sample_stderr,
    stderr_for_metric,
)
from lm_eval.api.task import Task
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from lm_eval.utils import eval_logger, positional_deprecated


class TaskOutput:
    """
    Wrapper class for Task outputs.It contains various attributes and methods to manage and calculate metrics for the task.

        Attributes:
            task (object): The task object.
            task_name (str): The name of the task.
            task_config (dict): The configuration of the task.
            version (str): The version of the task.
            group_name (str): The name of the task group.
            n_shot (int): The number of shots for the task.
            task_alias (str): The alias of the task.
            group_alias (str): The alias of the task group.
            is_group (bool): Indicates if the task is a group.
            logged_samples (list): The list of logged samples.
            sample_len (int): The length of the samples.
            sample_metrics (defaultdict): The dictionary of samples' metrics.
            agg_metrics (defaultdict): The dictionary of aggregate metrics.

        Methods:
            from_taskdict(cls, task_name: str, task):
                Creates a TaskOutput instance from a task dictionary.

            calculate_aggregate_metric(bootstrap_iters=100000) -> None:
                Calculates the aggregate metrics for the task.
    """

    def __init__(
        self,
        task=None,
        task_name=None,
        task_config=None,
        version=None,
        group_name=None,
        n_shot=None,
        task_alias=None,
        group_alias=None,
        is_group=None,
    ):
        self.task = task
        self.task_config = task_config
        self.task_name = task_name
        self.group_name = group_name
        self.version = version
        self.n_shot = n_shot
        self.task_alias = task_alias
        self.group_alias = group_alias
        self.is_group = is_group
        self.logged_samples = []
        self.sample_len = None
        self.sample_metrics = collections.defaultdict(list)
        self.agg_metrics = collections.defaultdict(list)

    @classmethod
    def from_taskdict(cls, task_name: str, task):
        if isinstance(task, tuple):
            group_name, task = task
        else:
            group_name = None
        if not task:
            # these gets filtered out in get_task_list
            # once they are added to group hierarchy
            is_group = True
            return cls(
                task=task, task_name=task_name, is_group=is_group, group_name=group_name
            )
        version = task.VERSION
        task_config = dict(task.dump_config())
        if (n_shot := task_config.get("num_fewshot")) == 0:
            n_shot = task_config.get("metadata", {}).get("num_fewshot", 0)
        task_alias = task_config.get("alias")
        group_alias = task_config.get("group_alias")
        return cls(
            task=task,
            task_name=task_name,
            task_config=task_config,
            group_name=group_name,
            version=version,
            n_shot=n_shot,
            task_alias=task_alias,
            group_alias=group_alias,
        )

    def calculate_aggregate_metric(self, bootstrap_iters=100000) -> None:
        for (metric, filter_key), items in self.sample_metrics.items():
            agg_fn = self.task.aggregation()[metric]
            metric_key = f"{metric},{filter_key}"
            self.agg_metrics[metric_key] = agg_fn(items)
            self.sample_len = len(items)  # TODO: same sample size for each metric?
106
            if isinstance(bootstrap_iters, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
107
                stderr_fn = stderr_for_metric(
108
109
110
111
112
113
114
115
                    metric=agg_fn,
                    bootstrap_iters=min(bootstrap_iters, 100)
                    if metric in ["bleu", "chrf", "ter"]
                    else bootstrap_iters,
                )
                self.agg_metrics[f"{metric}_stderr,{filter_key}"] = (
                    stderr_fn(items) if (stderr_fn and len(items) > 1) else "N/A"
                )
116
117
118
119
            else:
                raise ValueError(
                    f"Received bootstrap_iters '{bootstrap_iters}' but expected an integer. Set to 0 to turn off stderr calculations."
                )
120
121
122
123
124

    def __repr__(self):
        return (
            f"TaskOutput(task_name={self.task_name}, "
            f"group_name={self.group_name}, "
Lintang Sutawika's avatar
Lintang Sutawika committed
125
126
127
128
            f"version={self.version}, "
            f"n_shot={self.n_shot}, "
            f"task_alias={self.task_alias}, "
            f"group_alias={self.group_alias})"
129
130
131
        )


Lintang Sutawika's avatar
Lintang Sutawika committed
132
133
134
135
136
137
def get_task_list(task_dict: dict) -> List[TaskOutput]:
    outputs = []
    for task_name, task_obj in task_dict.items():
        if isinstance(task_obj, dict):
            _outputs = get_task_list(task_obj)
            outputs.extend(_outputs)
138
        else:
Lintang Sutawika's avatar
Lintang Sutawika committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
            task_output = TaskOutput.from_taskdict(task_name, task_obj)
            outputs.append(task_output)

    return outputs


def get_subtask_list(task_dict, task_root=None, depth=0):
    subtask_list = {}
    for group_obj, task_obj in task_dict.items():
        if isinstance(group_obj, ConfigurableGroup):
            # group_name = group_obj.group_name
            group_name = group_obj.group_name
        else:
            group_name = group_obj
        if isinstance(task_obj, dict):
            _subtask_list = get_subtask_list(
                task_obj, task_root=group_name, depth=depth + 1
            )
            if task_root:
                subtask_list.setdefault((task_root, depth), []).extend(
                    [
                        _task
                        for (_task, _depth) in _subtask_list.keys()
                        if (_depth - 1) == depth
                    ]
                )

            subtask_list = {**subtask_list, **_subtask_list}
        else:
            if isinstance(task_obj, ConfigurableGroup):
                # group_or_task_name = task_obj.group_name
                group_or_task_name = task_obj.group_name
            elif isinstance(task_obj, Task):
                # group_or_task_name = task_obj.task_name
                group_or_task_name = task_obj.task_name

            if task_root is None:
                subtask_list.setdefault((group_or_task_name, depth), [])
            else:
                subtask_list.setdefault((task_root, depth), []).append(
                    group_or_task_name
                )

    if depth == 0:
        _subtask_list = {}
        for group_key, task_list in subtask_list.items():
            group_name, depth = group_key
            _subtask_list[group_name] = task_list
        subtask_list = _subtask_list

    return subtask_list
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211


def print_writeout(task) -> None:
    for inst in task.instances:
        # print the prompt for the first few documents
        if inst.doc_id < 1:
            eval_logger.info(
                f"Task: {task}; document {inst.doc_id}; context prompt (starting on next line):\
    \n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)"
            )
            eval_logger.info(f"Request: {str(inst)}")


def get_sample_size(task, limit: Optional[int]) -> Union[int, None]:
    if limit is not None:
        limit = (
            int(math.ceil(len(task.eval_docs) * limit)) if limit < 1.0 else int(limit)
        )
    return limit


def prepare_print_tasks(
Lintang Sutawika's avatar
Lintang Sutawika committed
212
213
214
215
    task_dict: dict,
    results: dict,
    task_depth=0,
    group_depth=0,
216
217
) -> Tuple[dict, dict]:
    """
Lintang Sutawika's avatar
Lintang Sutawika committed
218
    @param task_dict: Dictionary representing the group hierarchy of tasks. Each key is a group name and its
219
220
221
    value is a list of task names.
    @param results: Dictionary containing the results of each task. Each key is a
    group name and its value is a dictionary of task results.
Lintang Sutawika's avatar
Lintang Sutawika committed
222
223
224
    @param task_depth: The indentation level for printing the task
    hierarchy. Default is 0.
    @param group_depth: The indentation level for printing the group
225
226
227
228
229
230
231
    hierarchy. Default is 0.
    @return: A tuple of two dictionaries: results_agg and groups_agg. results_agg contains
    aggregated results for each task, and groups_agg contains aggregated results for each group.

    Prepares the task hierarchy and aggregates the results for each task and group recursively for printing.
    """

Lintang Sutawika's avatar
Lintang Sutawika committed
232
233
234
235
236
237
238
239
240
241
242
243
    def _sort_task_dict(task_dict):
        """
        Helper utility. Sorts the task dict at the current level of the hierarchy based on alphabetized task name.
        Required so that we end up sorting within each sub-header correctly.
        """

        return dict(
            sorted(
                task_dict.items(),
                key=lambda item: item[0].group_name
                if isinstance(item[0], ConfigurableGroup)
                else item[0],
244
            )
Lintang Sutawika's avatar
Lintang Sutawika committed
245
        )
246

Lintang Sutawika's avatar
Lintang Sutawika committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    task_agg = collections.defaultdict(dict)
    group_agg = collections.defaultdict(dict)
    task_dict = _sort_task_dict(task_dict)
    for task_or_group_name, task_or_group_obj in task_dict.items():
        tab_string = " " * task_depth + "- " if task_depth > 0 else ""
        if isinstance(task_or_group_name, ConfigurableGroup):
            # string_name = task_or_group_name.group_name
            name = task_or_group_name.group_name
            from_configurable_group = True
            task_or_group_obj = _sort_task_dict(task_or_group_obj)
        elif isinstance(task_or_group_name, str):
            name = task_or_group_name
            if isinstance(task_or_group_obj, Task):
                # string_name = task_or_group_obj.task_name
                name = task_or_group_obj.task_name
            from_configurable_group = False

        task_agg[name] = results[name].copy()
        if from_configurable_group:
            if task_or_group_name.group_alias is not None:
                alias = task_or_group_name.group_alias
268
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
                alias = task_or_group_name.group
        else:
            if "alias" in task_agg[name]:
                alias = task_agg[name]["alias"]
            else:
                alias = name

        task_agg[name]["alias"] = tab_string + alias
        if "samples" in task_agg[name]:
            task_agg[name].pop("samples")

        if from_configurable_group and (" " not in results[name]):
            group_tab_string = " " * group_depth + "- " if group_depth > 0 else ""
            group_agg[name] = results[name].copy()
            group_agg[name]["alias"] = group_tab_string + alias
            if "samples" in group_agg[name]:
                group_agg[name].pop("samples")

        if isinstance(task_or_group_obj, dict):
            task_depth += 1
            group_depth += 1
            _task_agg, _group_agg = prepare_print_tasks(
                task_or_group_obj, results, task_depth, group_depth
292
            )
Lintang Sutawika's avatar
Lintang Sutawika committed
293
294
295
296
297
298
299
300
            task_agg = {
                **task_agg,
                **_task_agg,
            }
            group_agg = {**group_agg, **_group_agg}
            task_depth -= 1
            group_depth -= 1
    return task_agg, group_agg
301
302
303
304


def consolidate_results(
    eval_tasks: List[TaskOutput],
305
) -> Tuple[dict, dict, dict, dict, dict, dict]:
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    """
    @param eval_tasks: list(TaskOutput).
    @return: A tuple containing the consolidated results, samples, configs, versions, and num_fewshot.

    Consolidates the results of multiple evaluation tasks into a single structure.

    The method iterates over each evaluation instance and extracts relevant information to create the consolidated
    results structure. The consolidated results structure has the following properties:

    - results: A defaultdict with task names as keys and dictionaries as values. Each dictionary contains
    metric/filter pairs as keys and corresponding metric values as values. The "alias" key is used to store task
    aliases specified in the task configuration.
    - samples: A defaultdict with task names as keys and lists of log samples as values.
    - configs: A defaultdict with task names as keys and task configurations as values.
    - versions: A defaultdict with task names as keys and task versions as values.
    - num_fewshot: A defaultdict with task names as keys and number of few-shot samples as values.
322
323
    - higher_is_better: A defaultdict with task names as keys and indicators of whether higher values are better
    for each metric as values.
324
325
326
327
328
329
330
331
332
333
334
335
336

    The method then returns the consolidated results, samples, configs, versions, and num_fewshot as a tuple.
    """
    # stores the final result for each task, for each metric/filter pair.
    results = collections.defaultdict(dict)
    # logs info about each document evaluated.
    samples = collections.defaultdict(list)
    # store num-fewshot value per task
    num_fewshot = collections.defaultdict(int)
    # Tracks the YAML configs of all chosen task
    configs = collections.defaultdict(dict)
    # Tracks each task's version.
    versions = collections.defaultdict(dict)
337
338
339
    # Track `higher_is_better` for each metric
    higher_is_better = collections.defaultdict(dict)

340
341
342
    for task_output in eval_tasks:
        if "task_alias" in (task_config := task_output.task_config):
            results[task_output.task_name]["alias"] = task_config["task_alias"]
Lintang Sutawika's avatar
Lintang Sutawika committed
343
344
        else:
            results[task_output.task_name]["alias"] = task_output.task_name
345
346
347
348
349
350
351
        if group_alias := task_output.group_alias:
            if group_alias not in results and (group_name := task_output.group_name):
                results[group_name]["alias"] = group_alias
        num_fewshot[task_output.task_name] = task_output.n_shot
        configs[task_output.task_name] = task_output.task_config
        versions[task_output.task_name] = task_output.version
        samples[task_output.task_name] = task_output.logged_samples
352
        higher_is_better[task_output.task_name] = task_output.task.higher_is_better()
353
354
355
356
357
358
        for (metric, filter_key), items in task_output.sample_metrics.items():
            metric_key = f"{metric},{filter_key}"
            results[task_output.task_name][metric_key] = task_output.agg_metrics[
                metric_key
            ]
            results[task_output.task_name]["samples"] = task_output.sample_len
359
360
361
            results[task_output.task_name][f"{metric}_stderr,{filter_key}"] = (
                task_output.agg_metrics[f"{metric}_stderr,{filter_key}"]
            )
362
    return results, samples, configs, versions, num_fewshot, higher_is_better
363
364


Lintang Sutawika's avatar
Lintang Sutawika committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
def consolidate_group_results(
    results,
    versions,
    task_dict,
    task_root=None,
    show_group_table=False,
    task_aggregation_list=None,
) -> Tuple[dict, dict, bool, Union[None,]]:
    """
    (Recursively) calculates groups' aggregated metrics and updates the results and versions dictionaries with this info.

    @return: a tuple [results, versions, show_group_table, task_aggregation_list] with formats described below:

    - results: A defaultdict with task names (and, after this function is called, group names of
    groups that perform aggregation) as keys, and dictionaries with "alias" and metric,filter_name pairs as keys.
    - versions: A defaultdict with task names (and, after this function is called, group names of
    groups that perform aggregation) as keys, and float values representing the task or group's version if a version is specified. (defaulting to None).
    - show_group_table: a boolean which is true if there exists a group that requires printing of its aggregated scores in a group table.
    - task_aggregation_list: a defaultdict listing the subtasks to average over to produce a given group's end metric.

    The method then returns the updated results, versions, show_group_table, and task_aggregation_list as a tuple.
    In the top-level invocation of this function, task_aggregation_list is ignored.
    """
    if task_root is None:
        task_root = {}

    if task_aggregation_list is None:
        task_aggregation_list = {}

    for group_or_task, group_or_task_info in task_dict.items():
        # Convert to string
        if isinstance(group_or_task, ConfigurableGroup):
            group_config = group_or_task.config
            group_or_task = group_or_task.group_name
        else:
            group_config = None

        if isinstance(group_or_task_info, Task):
            if task_root:
                task_aggregation_list.setdefault(task_root, []).append(
                    group_or_task_info.task_name
                )
        else:
            (
                results,
                versions,
                show_group_table,
                _task_aggregation_list,
            ) = consolidate_group_results(
                results,
                versions,
                group_or_task_info,
                group_or_task,
                show_group_table,
                task_aggregation_list,
            )
            if task_root:
                task_aggregation_list.setdefault(task_root, []).extend(
                    task_aggregation_list.get(group_or_task, [])
                )

            if (group_config is None) or (
                group_config["aggregate_metric_list"] is None
            ):
                results[group_or_task][" "] = " "
                continue

            if "aggregate_metric_list" in group_config:
                agg_metric_list = group_config["aggregate_metric_list"]

            show_group_table = show_group_table | bool(
                group_config["aggregate_metric_list"]
            )

            task_list = _task_aggregation_list[group_or_task]

            metric_list = list(
                {
                    key
                    for task in task_list
                    for key in results[task].keys()
                    if "_stderr" not in key and key not in ["task", "alias", "samples"]
                }
            )
            for metric in metric_list:
                stderr = "_stderr,".join(metric.split(","))

                # gather metrics, sizes, and stderrs from subtasks
                metrics = [
                    results[task][metric]
                    for task in task_list
                    if metric in results[task]
                ]  # TODO: copy?
                stderrs = [
                    results[task][stderr]
                    for task in task_list
                    if stderr in results[task]
                ]
                sizes = [
                    results[task]["samples"]
                    for task in task_list
                    if metric in results[task]
                ]

                for metric_config in agg_metric_list:
                    for filter_name in metric_config["filter_list"]:
                        if metric != ",".join([metric_config["metric"], filter_name]):
                            continue

                        # compute group's pooled metric and stderr
                        if metric_config["aggregation"] == "mean":
                            aggregate_fn = aggregate_subtask_metrics
477
478
                        elif callable(metric_config["aggregation"]):
                            aggregate_fn = metric_config["aggregation"]
Lintang Sutawika's avatar
Lintang Sutawika committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
                        else:
                            raise ValueError(
                                f"Currently, only 'mean' is supported for automatically aggregating scores across groups' subtasks. Got '{metric_config['aggregation']}' for group '{group_or_task}'"
                            )

                        results[group_or_task][metric] = aggregate_fn(
                            metrics,
                            sizes,
                            metric_config["weight_by_size"],
                        )
                        # TODO: calculate groups' metrics using arbitrary agg fns
                        if "N/A" in stderrs:
                            results[group_or_task][stderr] = "N/A"
                        else:
                            # NOTE: this assumes we are using the mean to aggregate. There are warnings about this elsewhere
                            results[group_or_task][stderr] = pooled_sample_stderr(
                                stderrs, sizes
                            )

                results[group_or_task]["samples"] = sum(sizes)
                group_metadata = group_config.get("metadata", None)
                if group_metadata is not None:
                    versions[group_or_task] = group_metadata.get("version", None)
    # print(results)
    return results, versions, show_group_table, task_aggregation_list


506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
        if (cur_path / "tests" / "test_version_stable.py").exists():
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )


@positional_deprecated
def run_task_tests(task_list: List[str]):
    """
    Find the package root and run the tests for the given tasks
    """
    import pytest

    package_root = find_test_root(start_path=pathlib.Path(__file__))
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )