utils.py 6.24 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Stephen Hogg's avatar
Stephen Hogg committed
2
import pathlib
Leo Gao's avatar
Leo Gao committed
3
import re
4
import collections
5
import functools
Leo Gao's avatar
Leo Gao committed
6
import inspect
Stephen Hogg's avatar
Stephen Hogg committed
7
import sys
8
9
10
from typing import List, Union

import torch
sdtblck's avatar
sdtblck committed
11

Xingjian Shi's avatar
Xingjian Shi committed
12
13
from omegaconf import OmegaConf

sdtblck's avatar
sdtblck committed
14
15
16
17
18
19
20
21
22
23

class ExitCodeError(Exception):
    pass


def sh(x):
    if os.system(x):
        raise ExitCodeError()


Jason Phang's avatar
gpt3  
Jason Phang committed
24
25
26
27
28
29
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
30
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
31
32
33
    if not args_string:
        return {}
    arg_list = args_string.split(",")
Xingjian Shi's avatar
Xingjian Shi committed
34
    args_dict = OmegaConf.to_object(OmegaConf.from_dotlist(arg_list))
Jason Phang's avatar
gpt3  
Jason Phang committed
35
    return args_dict
Leo Gao's avatar
Leo Gao committed
36

Fabrizio Milo's avatar
Fabrizio Milo committed
37

Leo Gao's avatar
Leo Gao committed
38
39
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
40
        yield from iter
Leo Gao's avatar
Leo Gao committed
41
42
43
44
45
46
47
48
49


def chunks(iter, n):
    arr = []
    for x in iter:
        arr.append(x)
        if len(arr) == n:
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
50
51
52
53

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
54

55
56
57
58
59
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
60

61
62
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
63

Leo Gao's avatar
Leo Gao committed
64
65
66
67
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
68
69
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
70
    string = re.sub(r" (['.,])", r"\1", string)
71
72
73
    return string


Jason Phang's avatar
Jason Phang committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
101
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
102
103
104
105
106
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
107

Jason Phang's avatar
Jason Phang committed
108
        yield (
Fabrizio Milo's avatar
Fabrizio Milo committed
109
110
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
111
112
113
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
114

Leo Gao's avatar
Leo Gao committed
115
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
116
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
117
    a, b = pair
118
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
119

Jason Phang's avatar
Jason Phang committed
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
def select_continuation_from_batch_left_padding(
    generations: Union[List[List[int]], torch.Tensor], max_context_size: int
):
    """Select the continuation from the batch, removing prompts of different lengths.
    Args:
        generations (Union[List[List[int]], torch.Tensor]):
            A tensor or list-of-lists of shape [batch_size, sequence length].
        max_context_size (int):
            The size of the biggest context; generations will proceed from that
            index.
    Example:
        PAD     PAD Continue : The dog chased the cat  [every       day of the week]
        Riddle  me    this   : The  dog chased the  cat [yesterday] PAD PAD PAD PAD
    Output:
        [every day of the week]
        [yesterday]  PAD PAD PAD PAD
    """
    return generations[:, max_context_size:]


141
142
143
144
145
class Reorderer:
    def __init__(self, arr, fn):
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
Fabrizio Milo's avatar
Fabrizio Milo committed
146
        arr = [([y[0] for y in x], x[0][1]) for x in arr]
147
148
149
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
150

151
152
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
153

154
155
156
157
158
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
159
            for ind in inds:
160
161
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
162

163
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
164

165
166
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
167

168
169
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
170
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
171
172
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
173

174
175
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
176
177
178
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
179
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
180
181
                "lm-evaluation-harness!"
            )
182
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
183

184
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
185

Fabrizio Milo's avatar
Fabrizio Milo committed
186

Stephen Hogg's avatar
Stephen Hogg committed
187
188
189
190
191
192
193
194
195
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
196
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
197
198
199
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
200
201
202
203
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
204
205

@positional_deprecated
206
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
207
208
209
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
210
211
    import pytest

212
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
213
214
215
216
217
218
219
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
220
221
222
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
223
224
225
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
226