superglue.py 12 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
# REMINDER: this code needs to be rewritten for the new framework. Remove this comment when the code is fully converted.

Jason Phang's avatar
Jason Phang committed
3
4
import numpy as np
from tqdm import auto as tqdm_lib
5
from . common import HFTask, simple_accuracy_metric, yesno
Leo Gao's avatar
Update  
Leo Gao committed
6
from lm_eval.base import rf, mean
Jason Phang's avatar
Jason Phang committed
7

8
class BoolQ(HFTask):
Leo Gao's avatar
Leo Gao committed
9
10
    DATASET_PATH = "super_glue"
    DATASET_NAME = "boolq"
Jason Phang's avatar
Jason Phang committed
11
12
13
14
15
16
17
18
19
20
21

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
22
        # TODO: figure out actual description
Jason Phang's avatar
Jason Phang committed
23
24
        return "Read the following passages and answer each question with a yes or a no."

Leo Gao's avatar
Update  
Leo Gao committed
25
26
27
28
29
    def doc_to_text(self, doc):
        return f"{doc['passage']}\nquestion: {doc['question']}\nanswer: "
    
    def doc_to_target(self, doc):
        return yesno(doc['label']) 
Jason Phang's avatar
Jason Phang committed
30

31
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Update  
Leo Gao committed
32

33
34
        ll_yes, _ = rf.loglikelihood(ctx, ' yes')
        ll_no , _ = rf.loglikelihood(ctx, ' no')
Leo Gao's avatar
Update  
Leo Gao committed
35
36
37
38
39
40

        return ll_yes, ll_no

    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]
41
        print(ll_yes > ll_no, gold)
Leo Gao's avatar
Update  
Leo Gao committed
42
43
44
45
46
47

        acc = 1. if (ll_yes > ll_no) == gold else 0.

        return [
            {
                "submetric": "acc",
Leo Gao's avatar
Leo Gao committed
48
                "value": acc,
Leo Gao's avatar
Update  
Leo Gao committed
49
50
51
52
                "higher_is_better": True,
                "aggregation": mean
            }
        ]
Jason Phang's avatar
Jason Phang committed
53
54


55
class CommitmentBank(HFTask):
Leo Gao's avatar
Leo Gao committed
56
57
    DATASET_PATH = "super_glue"
    DATASET_NAME = "cb"
Jason Phang's avatar
Jason Phang committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\ttrue, false or neither?\nanswer:".format(
            doc["premise"],
            doc["hypothesis"],
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "true", 1: "neither", 2: "false"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
81
82
83
84
85
        # TODO: Implement evaluation code using new framework

        # ***IMPORTANT***: this evaluation function needs to be rewritten for the new framework. 
        # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
        # Remove this comment when the evaluation code is implemented.
Jason Phang's avatar
Jason Phang committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            probs = np.array([
                lm.loglikelihood(ctx, ' true'),
                lm.loglikelihood(ctx, ' neither'),
                lm.loglikelihood(ctx, ' false'),
            ])
            preds.append(np.argmax(probs))
        return simple_accuracy_metric(preds=preds, golds=golds)


103
class Copa(HFTask):
Leo Gao's avatar
Leo Gao committed
104
105
    DATASET_PATH = "super_glue"
    DATASET_NAME = "copa"
Jason Phang's avatar
Jason Phang committed
106
107
108
109
110
111
112
113
114
115
116
117

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        # Drop the period
Jason Phang's avatar
Jason Phang committed
118
119
120
121
122
        connector = {
            "cause": "because",
            "effect": "therefore",
        }[doc["question"]]
        text = doc["premise"].strip()[:-1] + f" {connector} "
Jason Phang's avatar
Jason Phang committed
123
124
125
126
127
128
129
        if include_target:
            correct_choice = doc["choice1"] if doc["label"] == 0 else doc["choice2"]
            # Connect the sentences
            text += self.convert_choice(correct_choice)
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
130
131
132
133
134
        # TODO: Implement evaluation code using new framework

        # ***IMPORTANT***: this evaluation function needs to be rewritten for the new framework. 
        # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
        # Remove this comment when the evaluation code is implemented.
Jason Phang's avatar
Jason Phang committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            choice1 = " " + self.convert_choice(doc["choice1"])
            choice2 = " " + self.convert_choice(doc["choice2"])
            preds.append(lm.loglikelihood(ctx, choice2) > lm.loglikelihood(ctx, choice1))
        return simple_accuracy_metric(preds=preds, golds=golds)

    @staticmethod
    def convert_choice(choice):
        return choice[0].lower() + choice[1:]


153
class MultiRC(HFTask):
Leo Gao's avatar
Leo Gao committed
154
155
    DATASET_PATH = "super_glue"
    DATASET_NAME = "multirc"
Jason Phang's avatar
multirc  
Jason Phang committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "READING COMPREHENSION ANSWER KEY"

    def doc_to_text(self, doc, include_target=True):
        return f"{doc['paragraph']}\n\n{doc['question']}\n" \
            + (self.format_answer(answer=doc["answer"], label=doc["label"])
               if include_target else "")

    @staticmethod
    def format_answer(answer, label):
        label_str = "True" if label else "False"
        return f"[{label_str}] {answer}"

    def evaluate(self, docs, lm, provide_description, num_fewshot):
180
181
182
183
184
        # TODO: Implement evaluation code using new framework

        # ***IMPORTANT***: this evaluation function needs to be rewritten for the new framework. 
        # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
        # Remove this comment when the evaluation code is implemented.
Jason Phang's avatar
multirc  
Jason Phang committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        preds = []
        for doc in docs:
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            true_choice = self.format_answer(answer=doc["answer"], label=True)
            false_choice = self.format_answer(answer=doc["answer"], label=False)
            preds.append(
                lm.loglikelihood(ctx, f' {true_choice}')
                > lm.loglikelihood(ctx, f' {false_choice}')
            )

        # Only count as correct if all answers are labeled correctly for each question
        question_scoring_dict = {}
        for doc, pred in zip(docs, preds):
            question_id = doc["idx"]["question"]
            if question_id not in question_scoring_dict:
                question_scoring_dict[question_id] = []
            gold_label = doc["label"] == 1
            question_scoring_dict[question_id].append(gold_label == pred)
        acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
        return {
            "major": acc,
            "minor": {"acc": acc},
            "higher_is_better": True,
        }


215
class WordsInContext(HFTask):
Leo Gao's avatar
Leo Gao committed
216
217
    DATASET_PATH = "super_glue"
    DATASET_NAME = "wic"
Jason Phang's avatar
Jason Phang committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\n{}\nquestion\tIs the word '{}' used in the same way in the" \
               " two sentences above?\nanswer:".format(
                    doc["sentence1"],
                    doc["sentence2"],
                    doc["sentence1"][doc["start1"]:doc["end1"]],
                )
        if include_target:
            text += " {}".format({0: "no", 1: "yes"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
240
241
242
243
244
        # TODO: Implement evaluation code using new framework

        # ***IMPORTANT***: this evaluation function needs to be rewritten for the new framework. 
        # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
        # Remove this comment when the evaluation code is implemented.
Jason Phang's avatar
Jason Phang committed
245
246
247
248
249
250
251
252
253
254
255
256
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' yes') > lm.loglikelihood(ctx, ' no'))
        return simple_accuracy_metric(preds=preds, golds=golds)


257
class SGWinogradSchemaChallenge(HFTask):
Leo Gao's avatar
Leo Gao committed
258
259
    DATASET_PATH = "super_glue"
    DATASET_NAME = "wsc"
Jason Phang's avatar
Jason Phang committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def training_docs(self):
        if self.has_training_docs():
            if self._training_docs is None:
                # GPT-3 Paper's format only uses positive examples
                self._training_docs = [
                    doc for doc in
                    self._load_nlp_dataset()["train"]
                    if doc["label"]
                ]
            return self._training_docs

    def fewshot_description(self):
        return "Final Exam with Answer Key\n" \
           "Instructions: Please carefully read the following passages. " \
           "For each passage, you must identify which noun the pronoun marked in *bold*" \
           " refers to.\n====="

    def doc_to_text(self, doc, include_target=True):
        raw_passage = doc["text"]
        passage = (
            raw_passage[:doc["span2_index"]]
            + "*{}*".format(doc["span2_text"])
            + raw_passage[doc["span2_index"] + len(doc["span2_text"]):]
        )
        pronoun = doc["span2_text"]
        text = (
            f"Passage: {passage}\n"
            + f"Question: In the passage above, what does the pronoun \"*{pronoun}*\" refer to?\n"
            + "Answer:"
        )
        if include_target:
            text += " {}".format(doc["span1_text"])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
305
306
307
308
309
        # TODO: Implement evaluation code using new framework

        # ***IMPORTANT***: this evaluation function needs to be rewritten for the new framework. 
        # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
        # Remove this comment when the evaluation code is implemented.
Jason Phang's avatar
Jason Phang committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            to_predict = " " + doc["span1_text"]
            num_tokens = len(lm.tokenizer.tokenize(to_predict))
            generated = lm.generate(
                context=ctx,
                max_gen_length=num_tokens,
            )
            preds.append(1 if generated == to_predict else 0)
        return simple_accuracy_metric(preds=preds, golds=golds)
Anish Thite's avatar
Anish Thite committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

class RTE(HFTask):
    DATASET_PATH = "super_glue"
    DATASET_NAME = "rte"

    def fewshot_description(self):
        #TODO: implement
        pass

    def doc_to_text(self, doc, include_target=True):
        if include_target:
            if doc['label'] == 0:
                answer = 'True'
            else:
                answer = 'False'
            return ''.join([doc['premise'], '\nquestion: ',doc['hypothesis'], ' True or False?\nanswer: ', answer])
        else:
            return ''.join([doc['premise'], '\nquestion: ',doc['hypothesis'], ' True or False?\nanswer: '])
344
345
346
347
348
349
    
    # TODO: Implement evaluation code

    # ***IMPORTANT***: this evaluation function needs to be written for the new framework. 
    # For more info, check out the interface in base.py and the example BoolQ implementation in superglue.py. 
    # Remove this comment when the evaluation code is implemented.
Anish Thite's avatar
Anish Thite committed
350