webqs.py 2.55 KB
Newer Older
1
from . common import HFTask
Leo Gao's avatar
Leo Gao committed
2

3
class WebQs(HFTask):
Leo Gao's avatar
Leo Gao committed
4
5
    DATASET_PATH = "web_questions"
    DATASET_NAME = None
Leo Gao's avatar
Leo Gao committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return False

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        # TODO: figure out description
        return ""

20
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
21
        print(doc)
22
        return "Q: " + doc['question'] + '\nA:'
Leo Gao's avatar
Leo Gao committed
23

24
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
25
26
27
        # this picks one answer to be the "correct" one, despite sometimes 
        # multiple correct answers being possible.
        # TODO: make sure we're actually handling multi-answer correctly
28
        return " " + doc['answers'][0]
Leo Gao's avatar
Leo Gao committed
29

Leo Gao's avatar
Leo Gao committed
30
31
32
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.
33

Leo Gao's avatar
Leo Gao committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
Leo Gao's avatar
Leo Gao committed
73
        raise NotImplementedError('Evaluation not implemented')