winogrande.py 3.79 KB
Newer Older
Charles Foster's avatar
Charles Foster committed
1
import numpy as np
2
from . common import HFTask
&'s avatar
& committed
3
4
from lm_eval.base import rf
from ..metrics import mean
5
6
7
8
9
10
11

"""
This evaluation of Winogrande uses partial evaluation as described by
Trinh & Le in Simple Method for Commonsense Reasoning (2018).
Reference: https://arxiv.org/abs/1806.02847
"""

Charles Foster's avatar
Charles Foster committed
12
13
14
15
16

class Winogrande(HFTask):
    DATASET_PATH = "winogrande"
    DATASET_NAME = "winogrande_xl"

17
18
    answer_to_num = {'1': 0, '2': 1}

Charles Foster's avatar
Charles Foster committed
19
20
21
22
23
24
25
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
26
        return False
Charles Foster's avatar
Charles Foster committed
27

28
29
    def doc_to_text(self, doc):
        return self.partial_context(doc, doc["option" + doc["answer"]])
Charles Foster's avatar
Charles Foster committed
30

31
32
33
34
    def fewshot_description(self):
        # TODO: redo description
        return "Winograd schema sentence including a either a ___ blank with a missing word, making the pronoun ambiguous, or the same with the word filled in."

35
    @classmethod
36
37
    def partial_context(cls, doc, option):
        # Substitute the pronoun in the sentence with the specified option
38
39
        # and ignore everything after.
        pronoun_loc = doc["sentence"].index("_")
40
41
42
        return doc["sentence"][:pronoun_loc] + option

    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
43
        return self.partial_target(doc)
44
45
46
47
48

    @classmethod
    def partial_target(cls, doc):
        # The target is everything after the document specified pronoun.
        pronoun_loc = doc["sentence"].index("_") + 1
Leo Gao's avatar
Leo Gao committed
49
        return " " + doc["sentence"][pronoun_loc:].strip()
50

Leo Gao's avatar
Leo Gao committed
51
    def construct_requests(self, doc, ctx):
52
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
53
        Requests which will be sent to the LM.
54

Leo Gao's avatar
Leo Gao committed
55
56
57
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
58
            The context string, generated by fewshot_context. This includes the natural
Leo Gao's avatar
Leo Gao committed
59
            language description, as well as the few shot examples, and the question
60
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
61
        """
62
        target = self.partial_target(doc)
63
        lls = []
64
65
66
        for option in [doc["option1"], doc["option2"]]:
            partial_ctx = self.partial_context(doc, option)
            full_ctx = self.append_context(ctx, partial_ctx)
67
68
            lls.append(rf.loglikelihood(full_ctx, target)[0])
        return lls
69
70
71

    @classmethod
    def append_context(cls, ctx, partial_ctx):
72
        ctx = ctx.split("\n\n")  # Each fewshot context is on its own new line.
73
74
        ctx.pop()  # Remove the correct context put in by `doc_to_text`.
        return "\n\n".join([*ctx, partial_ctx]) if ctx else partial_ctx
75

Leo Gao's avatar
Leo Gao committed
76
    def process_results(self, doc, results):
77
78
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
Leo Gao's avatar
Leo Gao committed
79
80
81
82
83
84
85
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
86
        return {
87
            "acc": np.argmax(results) == self.answer_to_num[doc["answer"]]
88
        }
Leo Gao's avatar
Leo Gao committed
89
90
91
92

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
93
            A dictionary where keys are the names of submetrics and values are
Leo Gao's avatar
Leo Gao committed
94
95
            functions that aggregate a list of metrics
        """
96
97
98
        return {
            "acc": mean
        }
Leo Gao's avatar
Leo Gao committed
99
100
101
102

    def higher_is_better(self):
        """
        :returns: {str: bool}
103
            A dictionary where keys are the names of submetrics and values are
Leo Gao's avatar
Leo Gao committed
104
105
            whether a higher value of the submetric is better
        """
106
107
108
        return {
            "acc": True
        }