metrics.py 12.5 KB
Newer Older
&'s avatar
& committed
1
import math
2
import random
3
4
5
6
7
from collections.abc import Iterable

import numpy as np
import sacrebleu
import sklearn.metrics
&'s avatar
& committed
8

9
from lm_eval.api.registry import register_aggregation, register_metric
10
11
12
13
14
15
16
17
18
19
20
21
22


# Register Aggregations First
@register_aggregation("mean")
def mean(arr):
    return sum(arr) / len(arr)


@register_aggregation("median")
def median(arr):
    return arr[len(arr) // 2]


23
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
24
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
@register_aggregation("perplexity")
def perplexity(items):
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
@register_aggregation("f1")
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    # print(preds)
    return sklearn.metrics.matthews_corrcoef(golds, preds)


59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
@register_aggregation("ece")
def ece(items: list) -> float:
    probs: list[float] = []
    scores: list[float] = []
    for i in range(len(items)):
        # Get only largest probability from each example
        largest_idx = np.argmax(items[i]["probs"])
        probs.append(items[i]["probs"][largest_idx])
        scores.append(items[i]["scores"][largest_idx])

    sorted_indices = np.argsort(probs)
    sorted_probs = np.asarray(probs)[sorted_indices]
    sorted_scores = np.asarray(scores)[sorted_indices]

    def bin_to_subsets(array: np.ndarray, num_subsets: int = 10) -> np.ndarray:
        subset_size: int = len(array) // num_subsets
        remainder: int = len(array) % num_subsets
        subsets: list[np.ndarray] = []
        start: int = 0
        for _ in range(num_subsets):
            subset_end: int = start + subset_size + (1 if remainder > 0 else 0)
            subsets.append(array[start:subset_end])
            start = subset_end
            remainder -= 1
        return subsets

    probs = np.asarray([np.mean(x) for x in bin_to_subsets(sorted_probs, 10)])
    freqs = np.asarray([np.mean(x) for x in bin_to_subsets(sorted_scores, 10)])
    return np.sum(np.abs(freqs - probs)) / len(freqs)


139
140
141
142
143
144
145
146
147
148
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


149
150
151
152
153
154
155
156
157
158
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


159
160
161
162
163
164
165
166
167
168
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
@register_metric(
    metric="ece",
    higher_is_better=False,
    output_type="multiple_choice",
    aggregation="ece",
)
def ece_fn(items):  # This is a passthrough function
    """
    Expected Calibration Error (ECE).

    This consists of the average absolute difference between the fraction of
    model predictions which are correct and the mean of the model's normalized
    probability for those predictions (after binning), for multiple choice questions.

    Paper: https://arxiv.org/abs/2207.05221
    """
    return items


188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
227

Leo Gao's avatar
Leo Gao committed
228
def pop_stddev(arr):
229
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
230
231
232
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
233
def sample_stddev(arr):
234
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
235
236
237
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
238
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
239
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
240
241


haileyschoelkopf's avatar
haileyschoelkopf committed
242
243
244
245
246
247
248
249
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
250
251
252


@register_metric(
253
    metric="f1",
254
255
    higher_is_better=True,
    output_type="multiple_choice",
haileyschoelkopf's avatar
haileyschoelkopf committed
256
    aggregation="f1",
257
)
258
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
259
    return items
260
261


262
263
264
265
266
267
268
269
270
271
@register_metric(
    metric="bleu",
    higher_is_better=True,
    output_type="greedy_until",
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
@register_metric(
    metric="chrf",
    higher_is_better=True,
    output_type="greedy_until",
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
    output_type="greedy_until",
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
334
335
336
337
338
339
340
341
342
343

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
384
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
385
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
386
387
        self.f = f
        self.n = n
388

Leo Gao's avatar
Leo Gao committed
389
390
391
392
393
394
395
396
397
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
398

399
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
400
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
401

Leo Gao's avatar
Leo Gao committed
402
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
403
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
404
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
405
406
407
408
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
409
    res = []
410
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
411
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
412

Leo Gao's avatar
Leo Gao committed
413
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
414
415
    for bootstrap in tqdm(
        pool.imap(
416
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
417
418
419
420
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
421
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
422
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
423

Leo Gao's avatar
Leo Gao committed
424
    pool.close()
Leo Gao's avatar
Leo Gao committed
425
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
426
427


428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
def stderr_for_metric(metric, bootstrap_iters):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)