metrics.py 12 KB
Newer Older
&'s avatar
& committed
1
import math
2
import random
3
4
5
6
7
from collections.abc import Iterable

import numpy as np
import sacrebleu
import sklearn.metrics
&'s avatar
& committed
8

9
from lm_eval.api.registry import register_aggregation, register_metric
10
11
12
13
14
15
16
17
18
19
20
21
22


# Register Aggregations First
@register_aggregation("mean")
def mean(arr):
    return sum(arr) / len(arr)


@register_aggregation("median")
def median(arr):
    return arr[len(arr) // 2]


23
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
24
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
@register_aggregation("perplexity")
def perplexity(items):
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
@register_aggregation("f1")
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    # print(preds)
    return sklearn.metrics.matthews_corrcoef(golds, preds)


59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
@register_aggregation("ece")
def ece(items: list) -> float:
    probs: list[float] = []
    scores: list[float] = []
    for i in range(len(items)):
        # Get only largest probability from each example
        largest_idx = np.argmax(items[i]["probs"])
        probs.append(items[i]["probs"][largest_idx])
        scores.append(items[i]["scores"][largest_idx])

    sorted_indices = np.argsort(probs)
    sorted_probs = np.asarray(probs)[sorted_indices]
    sorted_scores = np.asarray(scores)[sorted_indices]

    def bin_to_subsets(array: np.ndarray, num_subsets: int = 10) -> np.ndarray:
        subset_size: int = len(array) // num_subsets
        remainder: int = len(array) % num_subsets
        subsets: list[np.ndarray] = []
        start: int = 0
        for _ in range(num_subsets):
            subset_end: int = start + subset_size + (1 if remainder > 0 else 0)
            subsets.append(array[start:subset_end])
            start = subset_end
            remainder -= 1
        return subsets

    probs = np.asarray([np.mean(x) for x in bin_to_subsets(sorted_probs, 10)])
    freqs = np.asarray([np.mean(x) for x in bin_to_subsets(sorted_scores, 10)])
    return np.sum(np.abs(freqs - probs)) / len(freqs)


90
91
92
93
94
95
96
97
98
99
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


100
101
102
103
104
105
106
107
108
109
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


110
111
112
113
114
115
116
117
118
119
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
@register_metric(
    metric="ece",
    higher_is_better=False,
    output_type="multiple_choice",
    aggregation="ece",
)
def ece_fn(items):  # This is a passthrough function
    """
    Expected Calibration Error (ECE).

    This consists of the average absolute difference between the fraction of
    model predictions which are correct and the mean of the model's normalized
    probability for those predictions (after binning), for multiple choice questions.

    Paper: https://arxiv.org/abs/2207.05221
    """
    return items


139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
178

Leo Gao's avatar
Leo Gao committed
179
def pop_stddev(arr):
180
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
181
182
183
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
184
def sample_stddev(arr):
185
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
186
187
188
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
189
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
190
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
191
192


haileyschoelkopf's avatar
haileyschoelkopf committed
193
194
195
196
197
198
199
200
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
201
202
203


@register_metric(
204
    metric="f1",
205
206
    higher_is_better=True,
    output_type="multiple_choice",
haileyschoelkopf's avatar
haileyschoelkopf committed
207
    aggregation="f1",
208
)
209
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
210
    return items
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237


@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
255
256
257
258
259
260
261
262
263
264

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


@register_metric(metric="bleu", higher_is_better=True, aggregation="mean")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


@register_metric(metric="chrf", higher_is_better=True, aggregation="mean")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_metric(metric="ter", higher_is_better=True, aggregation="mean")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
354
355
356
357
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
358

Leo Gao's avatar
Leo Gao committed
359
360
361
362
363
364
365
366
367
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
368

369
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
370
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
371

Leo Gao's avatar
Leo Gao committed
372
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
373
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
374
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
375
376
377
378
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
379
    res = []
380
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
381
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
382

Leo Gao's avatar
Leo Gao committed
383
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
384
385
    for bootstrap in tqdm(
        pool.imap(
386
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
387
388
389
390
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
391
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
392
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
393

Leo Gao's avatar
Leo Gao committed
394
    pool.close()
Leo Gao's avatar
Leo Gao committed
395
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
396
397


398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
def stderr_for_metric(metric, bootstrap_iters):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)