triviaqa.py 4.05 KB
Newer Older
Jonathan Tow's avatar
Jonathan Tow committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Custom TriviaQA because HF version sanitizes the dataset differently.
Jon Tow's avatar
Jon Tow committed
16
"""TriviaQA (Unfiltered Raw) dataset."""
Jonathan Tow's avatar
Jonathan Tow committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69


import json
import os

import datasets


_CITATION = """\
@InProceedings{JoshiTriviaQA2017,
    author = {Joshi, Mandar and Choi, Eunsol and Weld, Daniel S. and Zettlemoyer, Luke},
    title = {TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension},
    booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics},
    month = {July},
    year = {2017},
    address = {Vancouver, Canada},
    publisher = {Association for Computational Linguistics},
}
"""

_DESCRIPTION = """\
TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence
triples. TriviaQA includes 95K question-answer pairs authored by trivia enthusiasts
and independently gathered evidence documents, six per question on average, that provide
high quality distant supervision for answering the questions.
"""

_HOMEPAGE = "https://nlp.cs.washington.edu/triviaqa/"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

_URLS = "http://eaidata.bmk.sh/data/triviaqa-unfiltered.tar.gz"


class TriviaQa(datasets.GeneratorBasedBuilder):
    """ TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence triples """

    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="triviaqa", version=VERSION, description="The TriviaQA dataset"),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "question": datasets.Value("string"),
                "answer": {
                    "aliases":  datasets.features.Sequence(
                        datasets.Value("string"),
                    ),
Jon Tow's avatar
Jon Tow committed
70
                    "value": datasets.Value("string")
Jonathan Tow's avatar
Jonathan Tow committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
                }
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "unfiltered-web-train.jsonl"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "unfiltered-web-dev.jsonl"),
                    "split": "dev",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)
                yield key, {
                    "question": data["Question"],
                    "answer": {
                        "aliases": data["Answer"]["Aliases"],
Jon Tow's avatar
Jon Tow committed
113
                        "value": data["Answer"]["Value"],
Jonathan Tow's avatar
Jonathan Tow committed
114
115
                    }
                }