anthropic_llms.py 3.32 KB
Newer Older
Jason Phang's avatar
Jason Phang committed
1
import os
haileyschoelkopf's avatar
haileyschoelkopf committed
2
3
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
Jason Phang's avatar
Jason Phang committed
4
5
6
7
from tqdm import tqdm
import time


lintangsutawika's avatar
lintangsutawika committed
8
9
10
def anthropic_completion(
    client, model, prompt, max_tokens_to_sample, temperature, stop
):
Jason Phang's avatar
Jason Phang committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
    """Query Anthropic API for completion.

    Retry with back-off until they respond
    """
    import anthropic

    backoff_time = 3
    while True:
        try:
            response = client.completion(
                prompt=f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}",
                model=model,
                # NOTE: Claude really likes to do CoT, and overly aggressive stop sequences
                #       (e.g. gsm8k's ":") may truncate a lot of the input.
                stop_sequences=[anthropic.HUMAN_PROMPT] + stop,
                max_tokens_to_sample=max_tokens_to_sample,
                temperature=temperature,
            )
            return response["completion"]
        except RuntimeError:
            # TODO: I don't actually know what error Anthropic raises when it times out
            #       So err update this error when we find out.
            import traceback

            traceback.print_exc()
            time.sleep(backoff_time)
            backoff_time *= 1.5


haileyschoelkopf's avatar
haileyschoelkopf committed
40
@register_model("anthropic")
lintangsutawika's avatar
lintangsutawika committed
41
class AnthropicLM(LM):
Jason Phang's avatar
Jason Phang committed
42
43
44
45
46
47
48
49
50
51
    REQ_CHUNK_SIZE = 20

    def __init__(self, model):
        """

        :param model: str
            Anthropic model e.g. claude-instant-v1
        """
        super().__init__()
        import anthropic
lintangsutawika's avatar
lintangsutawika committed
52

Jason Phang's avatar
Jason Phang committed
53
        self.model = model
lintangsutawika's avatar
lintangsutawika committed
54
        self.client = anthropic.Client(os.environ["ANTHROPIC_API_KEY"])
Jason Phang's avatar
Jason Phang committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    @property
    def eot_token_id(self):
        raise NotImplementedError("No idea about anthropic tokenization.")

    @property
    def max_length(self):
        return 2048

    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    @property
    def device(self):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def tok_encode(self, string: str):
        raise NotImplementedError("No idea about anthropic tokenization.")

    def tok_decode(self, tokens):
        raise NotImplementedError("No idea about anthropic tokenization.")

    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        raise NotImplementedError("No support for logits.")

    def greedy_until(self, requests):
        if not requests:
            return []

        res = []
        for request in tqdm(requests):
            inp = request[0]
            request_args = request[1]
            until = request_args["until"]
            response = anthropic_completion(
                client=self.client,
                model=self.model,
                prompt=inp,
                max_tokens_to_sample=self.max_gen_toks,
101
                temperature=0.0,  # TODO: implement non-greedy sampling for Anthropic
Jason Phang's avatar
Jason Phang committed
102
103
104
105
106
107
108
109
110
111
112
113
                stop=until,
            )
            res.append(response)
        return res

    def _model_call(self, inps):
        # Isn't used because we override _loglikelihood_tokens
        raise NotImplementedError()

    def _model_generate(self, context, max_length, eos_token_id):
        # Isn't used because we override greedy_until
        raise NotImplementedError()