openai_completions.py 7.21 KB
Newer Older
Jason Phang's avatar
gpt3  
Jason Phang committed
1
import os
Baber Abbasi's avatar
Baber Abbasi committed
2
3
from functools import cached_property
from typing import Any, Dict, List, Optional, Tuple, Union
4

5
from lm_eval.api.registry import register_model
Baber Abbasi's avatar
Baber Abbasi committed
6
from lm_eval.models.api_models import TemplateAPI
7
from lm_eval.utils import eval_logger
Leo Gao's avatar
Leo Gao committed
8

lintangsutawika's avatar
update  
lintangsutawika committed
9

Baber Abbasi's avatar
Baber Abbasi committed
10
11
@register_model("local-completions")
class LocalCompletionsAPI(TemplateAPI):
lintangsutawika's avatar
lintangsutawika committed
12
13
    def __init__(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
14
15
16
17
18
19
20
        base_url=None,
        tokenizer_backend="huggingface",
        **kwargs,
    ):
        super().__init__(
            base_url=base_url, tokenizer_backend=tokenizer_backend, **kwargs
        )
lintangsutawika's avatar
lintangsutawika committed
21

Baber Abbasi's avatar
Baber Abbasi committed
22
23
24
25
26
    def _create_payload(
        self,
        messages: Union[List[List[int]], List[dict], List[str], str],
        generate=False,
        gen_kwargs: Optional[dict] = None,
27
        seed: int = 1234,
Baber Abbasi's avatar
Baber Abbasi committed
28
29
30
31
        **kwargs,
    ) -> dict:
        if generate:
            gen_kwargs.pop("do_sample", False)
32
33
34
35
            if "max_tokens" in gen_kwargs:
                max_tokens = gen_kwargs.pop("max_tokens")
            else:
                max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
Baber Abbasi's avatar
Baber Abbasi committed
36
37
38
39
40
41
42
43
            temperature = gen_kwargs.pop("temperature", 0)
            stop = gen_kwargs.pop("until", ["<|endoftext|>"])
            return {
                "prompt": messages,
                "model": self.model,
                "max_tokens": max_tokens,
                "temperature": temperature,
                "stop": stop,
44
                "seed": seed,
Baber Abbasi's avatar
Baber Abbasi committed
45
46
                **gen_kwargs,
            }
Baber Abbasi's avatar
Baber Abbasi committed
47
        else:
Baber Abbasi's avatar
Baber Abbasi committed
48
49
50
            return {
                "model": self.model,
                "prompt": messages,
51
                "temperature": 0,
Baber Abbasi's avatar
Baber Abbasi committed
52
53
                "max_tokens": 1,
                "logprobs": 1,
54
                "seed": seed,
Baber Abbasi's avatar
Baber Abbasi committed
55
56
57
58
59
60
61
62
63
                "echo": True,
            }

    @staticmethod
    def parse_logprobs(
        outputs: Union[Dict, List[Dict]],
        tokens: List[List[int]] = None,
        ctxlens: List[int] = None,
        **kwargs,
lintangsutawika's avatar
lintangsutawika committed
64
65
    ) -> List[Tuple[float, bool]]:
        res = []
Baber Abbasi's avatar
Baber Abbasi committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        if not isinstance(outputs, list):
            outputs = [outputs]
        for out in outputs:
            for choice, ctxlen in zip(out["choices"], ctxlens):
                assert ctxlen > 0, "Context length must be greater than 0"
                logprobs = sum(choice["logprobs"]["token_logprobs"][ctxlen:-1])
                tokens = choice["logprobs"]["token_logprobs"][ctxlen:-1]
                top_logprobs = choice["logprobs"]["top_logprobs"][ctxlen:-1]
                is_greedy = True
                for tok, top in zip(tokens, top_logprobs):
                    if tok != max(top, key=top.get):
                        is_greedy = False
                        break
                res.append((logprobs, is_greedy))
        return res

    @staticmethod
    def parse_generations(outputs: Union[Dict, List[Dict]], **kwargs) -> List[str]:
lintangsutawika's avatar
lintangsutawika committed
84
        res = []
Baber Abbasi's avatar
Baber Abbasi committed
85
86
87
88
89
90
        if not isinstance(outputs, list):
            outputs = [outputs]
        for out in outputs:
            for choices in out["choices"]:
                res.append(choices["text"])
        return res
lintangsutawika's avatar
lintangsutawika committed
91

Baber Abbasi's avatar
Baber Abbasi committed
92
93
94
    @property
    def api_key(self):
        return os.environ.get("OPENAI_API_KEY", "")
lintangsutawika's avatar
lintangsutawika committed
95
96


Baber Abbasi's avatar
Baber Abbasi committed
97
98
99
100
101
102
103
104
105
@register_model("local-chat-completions")
class LocalChatCompletion(LocalCompletionsAPI):
    def __init__(
        self,
        base_url=None,
        tokenizer_backend=None,
        tokenized_requests=False,
        **kwargs,
    ):
106
107
108
        eval_logger.warning(
            "chat-completions endpoint requires the `--apply_chat_template` flag."
        )
Baber Abbasi's avatar
Baber Abbasi committed
109
110
111
112
113
114
115
116
117
        super().__init__(
            base_url=base_url,
            tokenizer_backend=tokenizer_backend,
            tokenized_requests=tokenized_requests,
            **kwargs,
        )
        if self._batch_size > 1:
            eval_logger.warning(
                "Chat completions does not support batching. Defaulting to batch size 1."
lintangsutawika's avatar
lintangsutawika committed
118
            )
Baber Abbasi's avatar
Baber Abbasi committed
119
120
121
            self._batch_size = 1

    def _create_payload(
122
123
124
125
126
127
        self,
        messages: List[Dict],
        generate=False,
        gen_kwargs: dict = None,
        seed=1234,
        **kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
128
129
    ) -> dict:
        gen_kwargs.pop("do_sample", False)
130
131
132
133
        if "max_tokens" in gen_kwargs:
            max_tokens = gen_kwargs.pop("max_tokens")
        else:
            max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
Baber Abbasi's avatar
Baber Abbasi committed
134
135
136
137
138
139
140
141
142
143
        temperature = gen_kwargs.pop("temperature", 0)
        stop = gen_kwargs.pop("until", ["<|endoftext|>"])
        if not isinstance(stop, (list, tuple)):
            stop = [stop]
        return {
            "messages": messages,
            "model": self.model,
            "max_tokens": max_tokens,
            "temperature": temperature,
            "stop": stop[:4],
144
            "seed": seed,
Baber Abbasi's avatar
Baber Abbasi committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            **gen_kwargs,
        }

    @staticmethod
    def parse_generations(outputs: Union[Dict, List[Dict]], **kwargs) -> List[str]:
        res = []
        if not isinstance(outputs, list):
            outputs = [outputs]
        for out in outputs:
            for choices in out["choices"]:
                res.append(choices["message"]["content"])
        return res

    def tok_encode(
        self,
        string: Union[str, Any],
        left_truncate_len=None,
        add_special_tokens=None,
        **kwargs,
    ) -> Union[List[str], List[int], Any]:
        return string
lintangsutawika's avatar
lintangsutawika committed
166

Baber Abbasi's avatar
Baber Abbasi committed
167
    def loglikelihood(self, requests, **kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
168
169
170
        raise NotImplementedError(
            "Loglikelihood is not supported for chat completions. Consider using the completions API instead."
        )
lintangsutawika's avatar
lintangsutawika committed
171
172


Baber Abbasi's avatar
Baber Abbasi committed
173
174
175
176
@register_model(
    "openai-completions",
)
class OpenAICompletionsAPI(LocalCompletionsAPI):
177
    def __init__(
178
        self,
Baber Abbasi's avatar
Baber Abbasi committed
179
180
        base_url="https://api.openai.com/v1/completions",
        tokenizer_backend="tiktoken",
181
        **kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
182
183
184
185
    ):
        super().__init__(
            base_url=base_url, tokenizer_backend=tokenizer_backend, **kwargs
        )
186

Baber Abbasi's avatar
Baber Abbasi committed
187
188
189
190
191
192
193
    @cached_property
    def api_key(self):
        """Override this property to return the API key for the API request."""
        key = os.environ.get("OPENAI_API_KEY", None)
        if key is None:
            raise ValueError(
                "API key not found. Please set the OPENAI_API_KEY environment variable."
194
            )
Baber Abbasi's avatar
Baber Abbasi committed
195
        return key
196

Baber Abbasi's avatar
Baber Abbasi committed
197
    def loglikelihood(self, requests, **kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
198
199
200
        assert (
            self.model != "gpt-3.5-turbo"
        ), "Loglikelihood is not supported for gpt-3.5-turbo"
Baber Abbasi's avatar
Baber Abbasi committed
201
        return super().loglikelihood(requests, **kwargs)
202

203
204
205
    def chat_template(self, chat_template: Union[bool, str] = False) -> Optional[str]:
        return ""

206

Baber Abbasi's avatar
Baber Abbasi committed
207
@register_model("openai-chat-completions")
Baber Abbasi's avatar
Baber Abbasi committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
class OpenAIChatCompletion(LocalChatCompletion):
    def __init__(
        self,
        base_url="https://api.openai.com/v1/chat/completions",
        tokenizer_backend=None,
        tokenized_requests=False,
        **kwargs,
    ):
        super().__init__(
            base_url=base_url,
            tokenizer_backend=tokenizer_backend,
            tokenized_requests=tokenized_requests,
            **kwargs,
        )
222

Baber Abbasi's avatar
Baber Abbasi committed
223
224
225
226
227
228
229
    @cached_property
    def api_key(self):
        """Override this property to return the API key for the API request."""
        key = os.environ.get("OPENAI_API_KEY", None)
        if key is None:
            raise ValueError(
                "API key not found. Please set the OPENAI_API_KEY environment variable."
230
            )
Baber Abbasi's avatar
Baber Abbasi committed
231
        return key