kold.py 3.78 KB
Newer Older
Gun1Yun's avatar
Gun1Yun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""
KOLD
https://arxiv.org/abs/2205.11315

Homepage: https://github.com/boychaboy/KOLD 
"""
import inspect
import lm_eval.datasets.kold.kold
import numpy as np
from lm_eval.base import MultipleChoiceTask, rf, Task
from lm_eval.metrics import macro_f1_score, mean, f1_score

def make_label(label: str):
    """
    0 = 없음
    1 = 개인
    2 = 단체
    """
    if label == "individual":
        return 1
    elif label == "group":
        return 2
    else:
        return 0

class KoldLevelA(Task):
    VERSION = 0
    DATASET_PATH = inspect.getfile(lm_eval.datasets.kold.kold)
    DATASET_NAME = "kolda"

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return False

    def has_test_docs(self):
        return True

    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

    def test_docs(self):
        return map(self._process_doc, self.dataset["test"])

    def _process_doc(self, doc):
        def format_example(doc):
            prompt = f"문장: {doc['comment']}\n"
            prompt += f"질문: 문장이 공격적인가요?\n정답:"
            return prompt
        
        return {
            "prompt": format_example(doc),
            "label": doc["off"]
        }


    def doc_to_text(self, doc):
        return doc["prompt"]

    def doc_to_target(self, doc):
        return " {}".format({0: "아니오", 1: "예"}[doc["label"]])

    def construct_requests(self, doc, ctx):
        ll_no, _ = rf.loglikelihood(ctx, " 아니오")
        ll_yes, _ = rf.loglikelihood(ctx, " 예")

        return ll_no, ll_yes

    def process_results(self, doc, results):
        pred = np.argmax(results)
        gold = doc["label"]
        return {
            "acc": pred == gold,
            "f1": (gold, pred)
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "f1": True
        }

    def aggregation(self):
        return {
            "acc": mean,
            "f1": f1_score
        }



class KoldLevelB(MultipleChoiceTask):
    VERSION = 0
    DATASET_PATH = inspect.getfile(lm_eval.datasets.kold.kold)
    DATASET_NAME = "koldb"


    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return False

    def has_test_docs(self):
        return True

    def training_docs(self):
        if self._training_docs is None:
            self._training_docs = list(self.dataset["train"])
        return self._training_docs

    def validation_docs(self):
        return self.dataset["validation"]

    def test_docs(self):
        return map(self._process_doc, self.dataset["test"])

    def _process_doc(self, doc):
        def format_example(doc, choices):
            prompt = f"문장: {doc['comment']}\n"
            prompt += "질문: 공격 대상이 "
            prompt += "".join([f"{choice} "for choice in choices])
            prompt += "중 무엇인가요?\n정답:"
            return prompt

        choices = ["없음", "개인", "단체"]
        return {
            "prompt": format_example(doc, choices),
            "choices": choices,
            "label": make_label(doc["tgt"])
        }


    def doc_to_text(self, doc):
        return doc["prompt"]

    def doc_to_target(self, doc):
        return " {}".format({0: "없음", 1: "개인", 2:"단체"}[doc["label"]])

    def process_results(self, doc, results):
        pred = np.argmax(results)
        gold = doc["label"]
        return {
            "f1": (gold, pred)
        }

    def higher_is_better(self):
        return {
            "f1": True
        }

    def aggregation(self):
        return {
            "f1": macro_f1_score
        }