metrics.py 12.1 KB
Newer Older
&'s avatar
& committed
1
import math
2
from collections.abc import Iterable
3
from collections import defaultdict
4
5
6
import numpy as np
import sacrebleu
import sklearn.metrics
Leo Gao's avatar
Leo Gao committed
7
import random
lintangsutawika's avatar
lintangsutawika committed
8
import evaluate
&'s avatar
& committed
9

10
11
from lm_eval.api.registry import register_metric, register_aggregation

12
import logging
lintangsutawika's avatar
lintangsutawika committed
13

14
eval_logger = logging.getLogger("lm-eval")
15
16
17
18
19
20
21
22
23
24
25
26

# Register Aggregations First
@register_aggregation("mean")
def mean(arr):
    return sum(arr) / len(arr)


@register_aggregation("median")
def median(arr):
    return arr[len(arr) // 2]


27
# Certain metrics must be calculated across all documents in a benchmark.
haileyschoelkopf's avatar
haileyschoelkopf committed
28
# We use them as aggregation metrics, paired with no-op passthrough metric fns.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
@register_aggregation("perplexity")
def perplexity(items):
    return math.exp(-mean(items))


@register_aggregation("weighted_perplexity")
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))


@register_aggregation("bits_per_byte")
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)


haileyschoelkopf's avatar
haileyschoelkopf committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
@register_aggregation("f1")
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


@register_aggregation("matthews_corrcoef")
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    # print(preds)
    return sklearn.metrics.matthews_corrcoef(golds, preds)


63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
@register_aggregation("bleu")
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_bleu(preds, refs).score


81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
@register_aggregation("chrf")
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_chrf(preds, refs).score


@register_aggregation("ter")
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
    refs, preds = _sacreformat(refs, preds)
    return sacrebleu.corpus_ter(preds, refs).score


lintangsutawika's avatar
lintangsutawika committed
112
113
@register_aggregation("brier_score")
def brier_score(items):  # This is a passthrough function
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

    # Certain datasets like arc_easy can have a different number of choices.
    golds, predictions = list(zip(*items))

    pred_group = defaultdict(list)
    gold_group = defaultdict(list)
    for gold, pred in zip(golds, predictions):
        pred_group[len(pred)].append(pred)
        gold_group[len(pred)].append(gold)

    total_size = 0
    average = 0
    for g, p in zip(gold_group.values(), pred_group.values()):
        _p = np.array(p)
        _g = np.array(g)
        _g_one_hot = np.eye(len(_p[0]))[_g]
        average += np.mean(np.sum((_p - _g_one_hot) ** 2, axis=1))*len(_g)
        total_size += len(_g)

    return average/total_size
lintangsutawika's avatar
lintangsutawika committed
134
135
136
137
138
139
140
141
142
143
144
145


@register_metric(
    metric="brier_score",
    higher_is_better=False,
    output_type=["multiple_choice"],
    aggregation="brier_score",
)
def brier_score_fn(items):  # This is a passthrough function
    return items


146
147
148
149
150
151
152
153
154
155
@register_metric(
    metric="acc",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_fn(items):  # This is a passthrough function
    return items


156
157
158
159
160
161
162
163
164
165
@register_metric(
    metric="acc_norm",
    higher_is_better=True,
    output_type=["loglikelihood", "multiple_choice"],
    aggregation="mean",
)
def acc_norm_fn(items):  # This is a passthrough function
    return items


166
167
168
169
170
171
172
173
174
175
@register_metric(
    metric="acc_mutual_info",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="mean",
)
def acc_mutual_info_fn(items):  # This is a passthrough function
    return items


176
177
178
exact_match = evaluate.load("exact_match")


179
180
181
182
183
184
@register_metric(
    metric="exact_match",
    higher_is_better=True,
    output_type="generate_until",
    aggregation="mean",
)
185
186
def exact_match_fn(**kwargs):
    return exact_match.compute(**kwargs)
187
188


189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
@register_metric(
    metric="perplexity",
    higher_is_better=False,
    output_type="loglikelihood",
    aggregation="perplexity",
)
def perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="word_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def word_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="byte_perplexity",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="weighted_perplexity",
)
def byte_perplexity_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="bits_per_byte",
    higher_is_better=False,
    output_type="loglikelihood_rolling",
    aggregation="bits_per_byte",
)
def bits_per_byte_fn(items):  # This is a passthrough function
    return items

&'s avatar
& committed
228

Leo Gao's avatar
Leo Gao committed
229
def pop_stddev(arr):
230
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
231
232
233
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
234
def sample_stddev(arr):
235
    mu = mean(arr)
Leo Gao's avatar
Leo Gao committed
236
237
238
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
239
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
240
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
241
242


haileyschoelkopf's avatar
haileyschoelkopf committed
243
244
245
246
247
248
249
250
@register_metric(
    metric="mcc",
    higher_is_better=True,
    output_type="multiple_choice",
    aggregation="matthews_corrcoef",
)
def mcc_fn(items):  # This is a passthrough function
    return items
251
252
253


@register_metric(
254
    metric="f1",
255
256
    higher_is_better=True,
    output_type="multiple_choice",
haileyschoelkopf's avatar
haileyschoelkopf committed
257
    aggregation="f1",
258
)
259
def f1_fn(items):  # This is a passthrough function
haileyschoelkopf's avatar
haileyschoelkopf committed
260
    return items
261
262


263
264
265
@register_metric(
    metric="bleu",
    higher_is_better=True,
266
    output_type="generate_until",
267
268
269
270
271
272
    aggregation="bleu",
)
def bleu_fn(items):  # This is a passthrough function
    return items


273
274
275
@register_metric(
    metric="chrf",
    higher_is_better=True,
276
    output_type="generate_until",
277
278
279
280
281
282
283
284
285
    aggregation="chrf",
)
def chrf_fn(items):  # This is a passthrough function
    return items


@register_metric(
    metric="ter",
    higher_is_better=True,
286
    output_type="generate_until",
287
288
289
290
291
292
    aggregation="ter",
)
def ter_fn(items):  # This is a passthrough function
    return items


293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
@register_metric(
    metric="acc_all",
    higher_is_better=True,
    output_type="loglikelihood",
    aggregation="mean",
)
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        paragraph_id = doc["idx"]["paragraph"]
        question_id = doc["idx"]["question"]
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []

        gold_label = doc["label"] == 1

        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc


Leo Gao's avatar
Leo Gao committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
335
336
337
338
339
340
341
342
343
344

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)


def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


def _sacreformat(refs, preds):
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
    # Sacrebleu expects (List[str], List[List[str])
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
    if not is_non_str_iterable(refs):
        refs = list(refs)
    if not is_non_str_iterable(refs[0]):
        refs = [[ref] for ref in refs]
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds

    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
    if not is_non_str_iterable(preds):
        preds = list(preds)
    if is_non_str_iterable(preds[0]):
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]

    return refs, preds


# stderr stuff


Leo Gao's avatar
Leo Gao committed
385
class _bootstrap_internal:
Ethan Smith's avatar
Ethan Smith committed
386
    def __init__(self, f, n) -> None:
Leo Gao's avatar
Leo Gao committed
387
388
        self.f = f
        self.n = n
389

Leo Gao's avatar
Leo Gao committed
390
391
392
393
394
395
396
397
398
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
399

400
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
401
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
402

Leo Gao's avatar
Leo Gao committed
403
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
404
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
405
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
406
407
408
409
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
410
    res = []
411
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
412
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
413

Leo Gao's avatar
Leo Gao committed
414
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
415
416
    for bootstrap in tqdm(
        pool.imap(
417
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
418
419
420
421
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
422
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
423
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
424

Leo Gao's avatar
Leo Gao committed
425
    pool.close()
Leo Gao's avatar
Leo Gao committed
426
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
427
428


429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
def stderr_for_metric(metric, bootstrap_iters):
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)

    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}

    return stderr.get(metric, None)