regression.py 5.96 KB
Newer Older
gakada's avatar
gakada committed
1
2
3
4
5
6
7
import argparse
import json
import os
import subprocess
import time
from pathlib import Path

8
9
from lm_eval import evaluator, utils
from lm_eval.api.registry import ALL_TASKS
gakada's avatar
gakada committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


seq2seq_models = ["google/flan-t5-small"]
causal_models = ["gpt2", "facebook/opt-125m", "EleutherAI/gpt-neo-125m", "EleutherAI/pythia-160m"]
model_names = seq2seq_models + causal_models


completion_tasks = ["boolq", "lambada_openai", "winogrande"]
choice_tasks = ["hellaswag", "openbookqa", "piqa"]
perplexity_tasks = ["wikitext"]
generation_tasks = []
task_names = completion_tasks + choice_tasks + perplexity_tasks + generation_tasks


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--branches", default=[])
    parser.add_argument("--models", default=model_names)
    parser.add_argument("--tasks", default=task_names)
    parser.add_argument("--acc_norm", type=bool, default=False)
    parser.add_argument("--perplexity", default=None)
    # TODO: implement num_fewshot and limit per task, e.g. task1:5,task2:1:100,task3::1000
    parser.add_argument("--num_fewshot", type=int, default=0)
    parser.add_argument("--limit", type=float, default=None)
    # TODO: implement hf-auto to pick between causal and seq2seq models so we don't need this
35
    parser.add_argument("--model", default="hf-causal")
gakada's avatar
gakada committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    # Use whatever is faster here
    parser.add_argument("--model_args", default="use_accelerate=True,load_in_8bit=True")
    parser.add_argument("--batch_size", default="auto")
    return parser.parse_args()


def eval_models(args, branch=None):
    if branch is not None:
        if os.system(f"git checkout {branch}") != 0:
            return {}, 0

    branch = branch or initial_branch

    start_time = time.time()

    results = {}

    for model in args.models:
54
        model_type = "hf-causal" if model in causal_models \
gakada's avatar
gakada committed
55
56
57
            else "hf-seq2seq" if model in seq2seq_models else args.model
        model_args = f"pretrained={model},{args.model_args}"
        # TODO: split_and_pad_windows in AutoSeq2SeqLM doesn"t exist, #527
58
        tasks = args.tasks if model in causal_models or model_type == "hf-causal" \
gakada's avatar
gakada committed
59
60
            else list(filter(lambda task: task not in perplexity_tasks, args.tasks))
        # TODO: OOM with auto for seq2seq models, also can OOM with llama
61
        batch_size = args.batch_size if model in causal_models or model_type == "hf-causal" \
gakada's avatar
gakada committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
            else 64 if args.batch_size == "auto" else args.batch_size
        output_path = f"data/regression/{int(start_time)}-{branch}-{Path(model).name}.json"

        command = f"python3 main.py --model {model_type} --model_args {model_args} --tasks {','.join(tasks)} " \
                  f"--num_fewshot {args.num_fewshot}{'' if args.limit is None else f' --limit {args.limit}'} " \
                  f"--batch_size {batch_size} --no_cache --output_path {output_path}"

        print(f"{'=' * 80}\nEvaluating {model} on {', '.join(tasks)} at {branch} with:\n\n{command}\n{'=' * 80}")

        ret = os.system(command)

        results[model] = json.load(open(output_path)) if ret == 0 else {"results": {}}

    end_time = time.time()

    return results, end_time - start_time


def extract_value(args, results, model, task, err=False):
    if model not in results:
        return 0
    results = results[model]["results"]
    if task not in results:
        return 0
    results = results[task]
87
88
89
90
91
92
    if args.acc_norm and "acc_norm,none" in results:
        return results["acc_norm,none"] if not err else results["acc_norm_stderr,none"]
    if "acc,none" in results:
        return results["acc,none"] if not err else results["acc_stderr,none"]
    if (args.perplexity or "word_perplexity") + ",none" in results:
        return results[(args.perplexity or "word_perplexity") + ",none"] if not err else 0
gakada's avatar
gakada committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    return 0


def format_value(args, results, model, task):
    val = 100 * extract_value(args, results, model, task)
    err = 100 * extract_value(args, results, model, task, err=True)
    return f"{val:.2f}{f' ± {err:.2f}' if err != 0 else ''}"


def format_diff(args, results1, results2, model, task):
    val1 = 100 * extract_value(args, results1, model, task)
    val2 = 100 * extract_value(args, results2, model, task)
    diff = val2 - val1
    return f"**+{diff:.2f}**" if diff > 0 else f"{diff:.2f}"


def main():
    args = parse_args()

    args.branches = args.branches.split(",") if type(args.branches) == str else args.branches
    args.models = args.models.split(",") if type(args.models) == str else args.models
114
115
    args.tasks = ALL_TASKS if args.tasks == "all_tasks" \
        else utils.pattern_match(args.tasks.split(","), ALL_TASKS) if type(args.tasks) == str else args.tasks
gakada's avatar
gakada committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

    global initial_branch
    initial_branch = subprocess.check_output("git branch --show-current", shell=True).decode("ascii").strip()

    # TODO: implement proper timing for each task
    # TODO: reduce IO by sharing tasks between models?

    results, runtime = eval_models(args)
    print(results, runtime)

    runs = []
    for branch in args.branches:
        runs.append((branch, *eval_models(args, branch)))

    os.system(f"git checkout {initial_branch}")

    print("")
    print(f"|task|{'|'.join(map(lambda model: Path(model).name, args.models))}|")
    print(f"|--|{'--|' * len(args.models)}")
    for task in args.tasks:
        print(f"|{task} ({initial_branch})|{'|'.join(map(lambda model: format_value(args, results, model, task), args.models))}|")
        for branch, branch_results, branch_runtime in runs:
            print(f"|{task} ({branch})|{'|'.join(map(lambda model: format_value(args, branch_results, model, task), args.models))}|")
            print(f"|{task} (diff)|{'|'.join(map(lambda model: format_diff(args, results, branch_results, model, task), args.models))}|")

    print("")
    print("|branch|runtime|%|")
    print("|--|--|--|")
    print(f"|{initial_branch}|{runtime:.1f}s|100%|")
    for branch, _, branch_runtime in runs:
        print(f"|{branch}|{branch_runtime:.1f}s|{100 * branch_runtime / runtime:.2f}%|")


if __name__ == "__main__":
    main()