main.py 3.98 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import os
Jason Phang's avatar
Jason Phang committed
2
import json
lintangsutawika's avatar
lintangsutawika committed
3
import argparse
Leo Gao's avatar
Leo Gao committed
4

5
from lm_eval import evaluator, utils
6
from lm_eval.api.registry import ALL_TASKS
lintangsutawika's avatar
lintangsutawika committed
7
from lm_eval.logger import eval_logger
Jason Phang's avatar
lib  
Jason Phang committed
8

9
os.environ["TOKENIZERS_PARALLELISM"] = "false"
10

Fabrizio Milo's avatar
Fabrizio Milo committed
11

Jason Phang's avatar
Jason Phang committed
12
13
def parse_args():
    parser = argparse.ArgumentParser()
Fabrizio Milo's avatar
Fabrizio Milo committed
14
15
    parser.add_argument("--model", required=True)
    parser.add_argument("--model_args", default="")
16
    parser.add_argument("--tasks", default=None, choices=utils.MultiChoice(sorted(ALL_TASKS)))
17
    parser.add_argument("--config", default=None)
Fabrizio Milo's avatar
Fabrizio Milo committed
18
    parser.add_argument("--num_fewshot", type=int, default=0)
19
    parser.add_argument("--batch_size", type=int, default=1)
20
21
    parser.add_argument("--max_batch_size", type=int, default=None,
                        help="Maximal batch size to try with --batch_size auto")
Fabrizio Milo's avatar
Fabrizio Milo committed
22
23
    parser.add_argument("--device", type=str, default=None)
    parser.add_argument("--output_path", default=None)
24
25
26
27
    parser.add_argument("--limit", type=float, default=None,
                        help="Limit the number of examples per task. "
                             "If <1, limit is a percentage of the total number of examples.")
    parser.add_argument("--data_sampling", type=float, default=None)
Fabrizio Milo's avatar
Fabrizio Milo committed
28
29
30
31
    parser.add_argument("--no_cache", action="store_true")
    parser.add_argument("--decontamination_ngrams_path", default=None)
    parser.add_argument("--description_dict_path", default=None)
    parser.add_argument("--check_integrity", action="store_true")
32
33
    parser.add_argument("--write_out", action="store_true", default=False)
    parser.add_argument("--output_base_path", type=str, default=None)
Jason Phang's avatar
Jason Phang committed
34
35
    return parser.parse_args()

Fabrizio Milo's avatar
Fabrizio Milo committed
36

37
def main():
Jason Phang's avatar
Jason Phang committed
38
    args = parse_args()
Fabrizio Milo's avatar
Fabrizio Milo committed
39

Leo Gao's avatar
Leo Gao committed
40
    if args.limit:
lintangsutawika's avatar
lintangsutawika committed
41
42
43
        eval_logger.warning(
            " --limit SHOULD ONLY BE USED FOR TESTING."
            "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
Fabrizio Milo's avatar
Fabrizio Milo committed
44
        )
Leo Gao's avatar
Leo Gao committed
45

46
    if args.tasks is None:
47
        task_names = ALL_TASKS
Jason Phang's avatar
Jason Phang committed
48
    else:
49
50
        if os.path.isdir(args.tasks):
            import glob
51
52

            task_names = []
53
54
            yaml_path = os.path.join(args.tasks, "*.yaml")
            for yaml_file in glob.glob(yaml_path):
lintangsutawika's avatar
lintangsutawika committed
55
                config = utils.load_yaml_config(yaml_file)
56
57
                task_names.append(config)
        else:
58
            tasks_list = args.tasks.split(",")
59
            task_names = utils.pattern_match(tasks_list, ALL_TASKS)
60
61
            for task in [task for task in tasks_list if task not in task_names]:
                if os.path.isfile(task):
lintangsutawika's avatar
lintangsutawika committed
62
                    config = utils.load_yaml_config(task)
63
                    task_names.append(config)
lintangsutawika's avatar
lintangsutawika committed
64

lintangsutawika's avatar
lintangsutawika committed
65
    eval_logger.info(f"Selected Tasks: {task_names}")
66

67
68
69
70
71
    # TODO: description_dict?
    # description_dict = {}
    # if args.description_dict_path:
    #     with open(args.description_dict_path, "r") as f:
    #         description_dict = json.load(f)
72

73
74
75
76
77
78
    results = evaluator.simple_evaluate(
        model=args.model,
        model_args=args.model_args,
        tasks=task_names,
        num_fewshot=args.num_fewshot,
        batch_size=args.batch_size,
79
        max_batch_size=args.max_batch_size,
80
        device=args.device,
81
        no_cache=args.no_cache,
82
        limit=args.limit,
83
        # description_dict=description_dict,
84
85
        decontamination_ngrams_path=args.decontamination_ngrams_path,
        check_integrity=args.check_integrity,
86
87
        write_out=args.write_out,
        output_base_path=args.output_base_path,
88
    )
89

90
91
92
93
94
    if results is not None:
        dumped = json.dumps(results, indent=2)
        print(dumped)

        if args.output_path:
95
            os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
96
97
98
            with open(args.output_path, "w") as f:
                f.write(dumped)

99
        batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))
100
        print(
101
102
            f"{args.model} ({args.model_args}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, "
            f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
103
104
        )
        print(evaluator.make_table(results))
Jason Phang's avatar
lib  
Jason Phang committed
105

106

Jason Phang's avatar
Jason Phang committed
107
if __name__ == "__main__":
Jason Phang's avatar
lib  
Jason Phang committed
108
    main()