cwe_utils.py 4.19 KB
Newer Older
Baber's avatar
Baber committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License


import random

import wonderwords
from tqdm import tqdm


RNG = random.Random(42)
TEMPLATE = ""
r = wonderwords.RandomWord()
WORDS = sorted(
    list(
        set([item for x in ["noun", "adjective", "verb"] for item in r._categories[x]])
    )
)
RNG.shuffle(WORDS)


def get_example(num_words, common_repeats=30, uncommon_repeats=3, common_nums=10):
    word_list_full = random.sample(WORDS, num_words)
    common, uncommon = word_list_full[:common_nums], word_list_full[common_nums:]
    word_list = common * int(common_repeats) + uncommon * int(uncommon_repeats)
    RNG.shuffle(word_list)

    # Formatting the word list as "1. word1 2. word2 3. word3 ..."
    context = " ".join([f"{i + 1}. {word}" for i, word in enumerate(word_list)])

    return context, common


def generate_input_output(num_words, max_seq_length, freq_cw=30, freq_ucw=3, num_cw=10):
    if max_seq_length < 4096:
        context_example, answer_example = get_example(20, 3, 1, num_cw)
        context, answer = get_example(num_words, 6, 1, num_cw)
    else:
        context_example, answer_example = get_example(40, 10, 3, num_cw)
        context, answer = get_example(num_words, freq_cw, freq_ucw, num_cw)

    template = TEMPLATE

    input_example = template.format(
        context=context_example,
        query="",
    ) + " ".join([f"{i + 1}. {word}" for i, word in enumerate(answer_example)])

    input_text = template.format(
        context=context,
        query="",
    )

    return input_example + "\n" + input_text, answer


def sys_word_pair_random(
    num_samples: int,
    max_seq_length: int,
    TOKENIZER=None,
    incremental: int = 10,
    remove_newline_tab=False,
    tokens_to_generate=120,
):
    assert TOKENIZER is not None, "Tokenizer is not provided."
    write_jsons = []
    tokens_to_generate = tokens_to_generate

    # Find the perfect num_words
    num_words = incremental

    total_tokens = 0
    while total_tokens + tokens_to_generate < max_seq_length:
        input_text, answer = generate_input_output(num_words, max_seq_length)
        # Calculate the number of tokens in the example
        total_tokens = len(
            TOKENIZER(
                input_text
                + " "
                + " ".join([f"{i + 1}. {word}" for i, word in enumerate(answer)])
            )
        )
        print(
            f"Max length {max_seq_length} | Current length {total_tokens + tokens_to_generate} | Words: {num_words}"
        )
        if total_tokens + tokens_to_generate > max_seq_length:
            num_words -= incremental
            break

        num_words += incremental
        if num_words > len(WORDS):
            num_words = len(WORDS)
            break

    print("num_words:", num_words)

    # Generate samples
    for index in tqdm(range(num_samples)):
        used_words = num_words
        while True:
            try:
                input_text, answer = generate_input_output(used_words)
                length = len(TOKENIZER.text_to_tokens(input_text)) + tokens_to_generate
                assert length <= max_seq_length, f"{length} exceeds max_seq_length."
                break
            except:
                if used_words > incremental:
                    used_words -= incremental

        if remove_newline_tab:
            input_text = " ".join(
                input_text.replace("\n", " ").replace("\t", " ").strip().split()
            )

        formatted_output = {
            "index": index,
            "input": input_text,
            "outputs": answer,
            "length": length,
            "max_length": max_seq_length,
        }
        write_jsons.append(formatted_output)

    return write_jsons