vllm_causallms.py 15 KB
Newer Older
baberabb's avatar
baberabb committed
1
from collections import defaultdict
baberabb's avatar
baberabb committed
2
from typing import List, Tuple, Optional, Literal, Union, Any
baberabb's avatar
baberabb committed
3
from transformers import AutoTokenizer
baberabb's avatar
baberabb committed
4
5
6
7
8
9
from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
import copy
from tqdm import tqdm
from lm_eval.api.registry import register_model
from lm_eval import utils
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
10

11
12
try:
    from vllm import LLM, SamplingParams
baberabb's avatar
baberabb committed
13
    from ray.util.multiprocessing import Pool
baberabb's avatar
baberabb committed
14
    from vllm.transformers_utils.tokenizer import get_tokenizer
15
16
except ModuleNotFoundError:
    pass
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
17
18


baberabb's avatar
baberabb committed
19
20
eval_logger = utils.eval_logger

baberabb's avatar
baberabb committed
21

baberabb's avatar
baberabb committed
22
# adapted from https://github.com/vllm-project/vllm/issues/367#issuecomment-1788341727
baberabb's avatar
baberabb committed
23
def run_inference_one_model(model_args: dict, sampling_params, requests: List[int]):
baberabb's avatar
baberabb committed
24
25
    # gpu_id = [x for x in gpu_id]
    # os.environ["CUDA_VISIBLE_DEVICES"]= str(gpu_id)
baberabb's avatar
baberabb committed
26
27
28
29
    llm = LLM(**model_args)
    return llm.generate(prompt_token_ids=requests, sampling_params=sampling_params)


baberabb's avatar
baberabb committed
30
31
32
33
34
35
36
37
38
39
@register_model("vllm")
class VLLM(LM):
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
        pretrained="gpt2",
        dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
        revision: Optional[str] = None,
        trust_remote_code: Optional[bool] = False,
baberabb's avatar
baberabb committed
40
        tokenizer: Optional[str] = None,
baberabb's avatar
baberabb committed
41
        tokenizer_mode: Literal["auto", "slow"] = "auto",
baberabb's avatar
baberabb committed
42
        tokenizer_revision: Optional[str] = None,
baberabb's avatar
baberabb committed
43
        tensor_parallel_size: int = 1,
baberabb's avatar
baberabb committed
44
        quantization: Optional[Literal["awq"]] = None,
baberabb's avatar
baberabb committed
45
46
        max_gen_toks: int = 256,
        swap_space: int = 4,
baberabb's avatar
baberabb committed
47
        batch_size: Union[str, int] = 1,
baberabb's avatar
baberabb committed
48
        max_batch_size=None,
baberabb's avatar
baberabb committed
49
        max_length: int = None,
baberabb's avatar
baberabb committed
50
        seed: int = 1234,
51
        gpu_memory_utilization: float = 0.9,
baberabb's avatar
baberabb committed
52
        device: str = "cuda",
baberabb's avatar
baberabb committed
53
        data_parallel: int = 1,
baberabb's avatar
baberabb committed
54
55
    ):
        super().__init__()
56
57
58

        try:
            import vllm
baberabb's avatar
baberabb committed
59
        except ModuleNotFoundError:
60
            raise Exception(
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
61
                "attempted to use 'vllm' LM type, but package `vllm` is not installed. \
62
please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`",
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
63
64
            )

baberabb's avatar
baberabb committed
65
        assert "cuda" in device or device is None, "vLLM only supports CUDA"
baberabb's avatar
baberabb committed
66
67
68
69
70
71
72
        self.tensor_parallel_size = int(tensor_parallel_size)
        self.data_parallel = int(data_parallel)
        self.model_args = {
            "model": pretrained,
            "gpu_memory_utilization": float(gpu_memory_utilization),
            "revision": revision,
            "dtype": dtype,
baberabb's avatar
baberabb committed
73
            "tokenizer": tokenizer,
baberabb's avatar
baberabb committed
74
            "tokenizer_mode": tokenizer_mode,
baberabb's avatar
baberabb committed
75
            "tokenizer_revision": tokenizer_revision,
baberabb's avatar
baberabb committed
76
77
78
79
80
81
82
83
            "trust_remote_code": trust_remote_code,
            "tensor_parallel_size": int(tensor_parallel_size),
            "swap_space": int(swap_space),
            "quantization": quantization,
            "seed": int(seed),
        }
        if self.data_parallel <= 1:
            self.model = LLM(**self.model_args)
baberabb's avatar
baberabb committed
84
85
        else:
            self.model_args["worker_use_ray"] = True
baberabb's avatar
nits  
baberabb committed
86
87
88
89
90
91
        self.tokenizer = get_tokenizer(
            tokenizer if tokenizer else pretrained,
            tokenizer_mode=tokenizer_mode,
            trust_remote_code=trust_remote_code,
            tokenizer_revision=tokenizer_revision,
        )
baberabb's avatar
baberabb committed
92
93
94
95
96
97
98
99
100
101
102
103
104
        self.batch_size = batch_size
        self._max_length = max_length
        self._max_gen_toks = max_gen_toks

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
baberabb's avatar
baberabb committed
105
106
        if hasattr(self.tokenizer, "model_max_length"):
            return self.tokenizer.model_max_length
baberabb's avatar
baberabb committed
107
108
109
110
111
112
        return self._DEFAULT_MAX_LENGTH

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

baberabb's avatar
baberabb committed
113
114
115
116
117
118
119
    def tok_encode(
        self,
        string: str,
        left_truncate_len=None,
        add_special_tokens=False,
        truncation=False,
    ):
baberabb's avatar
baberabb committed
120
        """ """
baberabb's avatar
baberabb committed
121
122
123
        encoding = self.tokenizer.encode(
            string, add_special_tokens=add_special_tokens, truncation=truncation
        )
baberabb's avatar
baberabb committed
124
125
126
127
128
129
130
131
132

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]

        return encoding

    def _model_generate(
        self,
baberabb's avatar
baberabb committed
133
        requests: List[List[int]] = None,
baberabb's avatar
baberabb committed
134
135
136
        generate: bool = False,
        max_tokens: int = None,
        stop: Optional[List[str]] = None,
baberabb's avatar
baberabb committed
137
        use_tqdm=True,
baberabb's avatar
baberabb committed
138
139
        **kwargs,
    ):
baberabb's avatar
bugfix  
baberabb committed
140
141
        if "do_sample" in kwargs.keys():
            kwargs.pop("do_sample")
baberabb's avatar
baberabb committed
142
        if generate:
baberabb's avatar
baberabb committed
143
            sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs)
baberabb's avatar
baberabb committed
144
        else:
baberabb's avatar
baberabb committed
145
            sampling_params = SamplingParams(
baberabb's avatar
baberabb committed
146
147
                temperature=0, prompt_logprobs=2, max_tokens=1
            )
baberabb's avatar
baberabb committed
148
        if self.data_parallel > 1:
baberabb's avatar
fixup  
baberabb committed
149
            requests = [list(x) for x in utils.divide(requests, self.data_parallel)]
baberabb's avatar
baberabb committed
150
            inputs = [(self.model_args, sampling_params, req) for req in requests]
baberabb's avatar
baberabb committed
151

baberabb's avatar
baberabb committed
152
            with Pool(self.data_parallel) as pool:
baberabb's avatar
baberabb committed
153
                results = pool.starmap(run_inference_one_model, inputs)
baberabb's avatar
baberabb committed
154
155
156
157
158
159
160
161
162
            # flatten results
            return [item for sublist in results for item in sublist]

        outputs = self.model.generate(
            prompt_token_ids=requests,
            sampling_params=sampling_params,
            use_tqdm=use_tqdm,
        )

baberabb's avatar
baberabb committed
163
164
        return outputs

baberabb's avatar
baberabb committed
165
    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
baberabb's avatar
baberabb committed
166
167
168
169
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
baberabb's avatar
baberabb committed
170
171
172
                context_enc, continuation_enc = [self.eot_token_id], self.tok_encode(
                    continuation
                )
baberabb's avatar
baberabb committed
173
174
175
176
177
178
179
180
181
182
183
184
            else:
                context_enc, continuation_enc = self.tokenizer(
                    [context, continuation],
                    truncation="do_not_truncate",
                    add_special_tokens=False,
                    return_attention_mask=False,
                ).input_ids

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

baberabb's avatar
baberabb committed
185
    def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
baberabb's avatar
baberabb committed
186
187
188
189
190
191
192
193
194
        loglikelihoods = []

        for (string,) in tqdm([req.args for req in requests]):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
baberabb's avatar
baberabb committed
195
                        max_seq_len=self.max_length - 1,
baberabb's avatar
baberabb committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
                        context_len=1,
                    ),
                )
            )

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
        return loglikelihoods

    def generate_until(self, requests: List[Instance]) -> List[str]:
        res = defaultdict(list)
        re_ords = {}

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
baberabb's avatar
bugfix  
baberabb committed
220
        context_encoding = self.tokenizer(context).input_ids
baberabb's avatar
baberabb committed
221
222
223
        requests = [
            ((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
        ]
baberabb's avatar
baberabb committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
            return -len(_requests[0][1]), tuple(_requests[0][1])

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
        grouper = utils.Grouper(requests, lambda x: str(x[1]))
        for key, reqs in grouper.get_grouped().items():
            # within each set of reqs for given kwargs, we reorder by token length, descending.
            re_ords[key] = utils.Reorderer(requests, _collate_gen)

        pbar = tqdm(total=len(requests), disable=(self.rank != 0))
        # for each different set of kwargs, we execute all requests, by batch.
        for key, re_ord in re_ords.items():
            chunks = utils.chunks(
                re_ord.get_reordered(),
baberabb's avatar
baberabb committed
247
                n=self.batch_size if self.batch_size != "auto" else 0,
baberabb's avatar
baberabb committed
248
249
250
                fn=None,
            )
            for chunk in chunks:
baberabb's avatar
bugfix  
baberabb committed
251
                context_and_encoding, all_gen_kwargs = zip(*chunk)
baberabb's avatar
baberabb committed
252
                context, context_encoding = zip(*context_and_encoding)
baberabb's avatar
baberabb committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
                # we assume all gen kwargs in the batch are the same
                # this is safe to assume because the `grouper` object ensures it.
                gen_kwargs = all_gen_kwargs[0]
                # unpack our keyword arguments.
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [until]
                        elif not isinstance(until, list):
                            raise ValueError(
                                f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                            )
                else:
                    raise ValueError(
                        f"Expected `kwargs` to be of type `dict` but got {gen_kwargs}"
                    )
                if not until:
                    until = [self.tokenizer.decode(self.eot_token_id)]
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks

                # set the max length in tokens of inputs ("context_enc")
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
                context_encoding = [x[-max_ctx_len:] for x in context_encoding]

                # TODO: max_length in kwargs

                # perform batched generation
                cont = self._model_generate(
                    requests=context_encoding,
                    generate=True,
                    max_tokens=max_gen_toks,
                    stop=until,
                    **kwargs,
                )

                # cache generations
                for output, context in zip(cont, context):
                    generated_text = output.outputs[0].text
                    res[key].append(generated_text)
                    self.cache_hook.add_partial(
                        "generate_until", (context, gen_kwargs), generated_text
                    )
                    pbar.update(1)

            # reorder this group of results back to original unsorted form
            res[key] = re_ord.get_original(res[key])

        pbar.close()

        return grouper.get_original(res)

    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
312
313
314
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
baberabb's avatar
baberabb committed
315
316
317
318
319
320
321
322
323
324
325
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        re_ord = utils.Reorderer(requests, _collate)

        chunks = utils.chunks(
            re_ord.get_reordered(),
baberabb's avatar
baberabb committed
326
            n=self.batch_size if self.batch_size != "auto" else 0,
baberabb's avatar
baberabb committed
327
328
            fn=None,
        )
baberabb's avatar
baberabb committed
329
        pbar = tqdm(total=len(requests), disable=disable_tqdm)
baberabb's avatar
baberabb committed
330
331
332
333
334
335
336
337
338
339
340
341
        for chunk in chunks:
            inps = []
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

                inps.append(inp)
                ctxlens.append(ctxlen)

baberabb's avatar
baberabb committed
342
            outputs = self._model_generate(requests=inps, generate=False)
baberabb's avatar
baberabb committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

            for output, ctxlen, (cache_key, context_enc, continuation_enc) in zip(
                outputs, ctxlens, chunk
            ):
                answer = self._parse_logprobs(
                    (context_enc + continuation_enc),
                    output,
                    ctxlen,
                )

                res.append(answer)

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
                    pbar.update(1)
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
baberabb's avatar
baberabb committed
363
    def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
baberabb's avatar
baberabb committed
364
365
366
        """Process logprobs and tokens.

        :param tokens: list
baberabb's avatar
baberabb committed
367
            Tokens from context+continuations
baberabb's avatar
bugfix  
baberabb committed
368
369
        :param outputs: RequestOutput
            Contains prompt
baberabb's avatar
baberabb committed
370
371
372
373
374
375
376
377
378
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

baberabb's avatar
baberabb committed
379
        # prompt_logprobs = [None, {}*len(context-1)]
baberabb's avatar
bugfix  
baberabb committed
380
381
        continuation_logprobs_dicts = outputs.prompt_logprobs

baberabb's avatar
baberabb committed
382
        # Calculate continuation_logprobs
baberabb's avatar
baberabb committed
383
        # assume ctxlen always > 1
baberabb's avatar
baberabb committed
384
        continuation_logprobs = sum(
baberabb's avatar
baberabb committed
385
            logprob_dict.get(token)
baberabb's avatar
baberabb committed
386
            for token, logprob_dict in zip(
baberabb's avatar
bugfix  
baberabb committed
387
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
baberabb's avatar
baberabb committed
388
389
390
391
392
            )
        )

        # Determine if is_greedy
        is_greedy = True
baberabb's avatar
baberabb committed
393
394
395
        for token, logprob_dict in zip(
            tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
        ):
baberabb's avatar
bugfix  
baberabb committed
396
397
398
399
400
401
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break
baberabb's avatar
baberabb committed
402
403

        return continuation_logprobs, is_greedy