base.py 7.44 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import abc
import random
thefazzer's avatar
thefazzer committed
3
import numpy as np
Jonathan Tow's avatar
Jonathan Tow committed
4
import sklearn
Jason Phang's avatar
gpt3  
Jason Phang committed
5

Jason Phang's avatar
Jason Phang committed
6

Leo Gao's avatar
Leo Gao committed
7
8
class LM(abc.ABC):
    @abc.abstractmethod
Leo Gao's avatar
Leo Gao committed
9
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
10
11
12
        """Compute log-likelihood of generating a continuation from a context.
        Downstream tasks should attempt to use loglikelihood instead of other 
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
13

Leo Gao's avatar
Leo Gao committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
        :param requests: list
            A list of pairs (context, continuation)
            context: str
                Context string
            continuation: str
                The continuation over which log likelihood will be calculated. If 
                there is a word boundary, the space should be in the continuation. 
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `contination`
            isgreedy:
                Whether `contination` would be generated by greedy sampling from `context`
        """
        pass

    @abc.abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
32
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
33
34
35
36
37
38
39
40
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
            until: str
                The string sequence to generate until. This string sequence may 
Leo Gao's avatar
Leo Gao committed
41
                span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
42
43
44
45
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
46
        """
Leo Gao's avatar
Leo Gao committed
47
48
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
49
50
51
52
53
54
55
56
57
58
59
    @classmethod
    def create_from_arg_string(cls, arg_string):
        """Constructor method, in case models need additional arguments
        e.g. OpenAI API engine, paths for loading, other params

        :param arg_string: str
            Left up to individual model class to handle

        """
        return cls()

Leo Gao's avatar
Leo Gao committed
60
61

class Dataset(abc.ABC):
Leo Gao's avatar
Leo Gao committed
62
63
64
    @abc.abstractmethod
    def __init__(self):
        self.download()
Leo Gao's avatar
Leo Gao committed
65
        self._traindocs = None
sdtblck's avatar
sdtblck committed
66
67
68
69
70

    def download(self):
        """Downloads the task dataset if necessary"""
        pass

71
72
    @abc.abstractmethod
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
73
        """Whether the task has a training set"""
74
75
76
77
        pass
    
    @abc.abstractmethod
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
78
79
80
81
82
83
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
84
85
        pass

Leo Gao's avatar
Leo Gao committed
86
87
    @abc.abstractmethod
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
88
89
90
91
92
        """

        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
93
94
95
96
97
98
99
100
101
102
103
        pass
    
    @abc.abstractmethod
    def validation_docs(self):
        pass
    
    @abc.abstractmethod
    def test_docs(self):
        pass
    
    def fewshot_examples(self, k):
Leo Gao's avatar
Leo Gao committed
104
105
106
107
        if self._traindocs is None:
            self._traindocs = list(self.training_docs())

        return random.sample(self._traindocs, k)
Leo Gao's avatar
Leo Gao committed
108
109

    @abc.abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
110
111
112
113
114
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
115
        pass
Leo Gao's avatar
Leo Gao committed
116
117

    @abc.abstractmethod
118
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Leo Gao committed
119
120
121
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

122
123
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
124
        :param ctx: str
125
126
127
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
Leo Gao's avatar
Leo Gao committed
128
        """
Leo Gao's avatar
Leo Gao committed
129
        pass
Leo Gao's avatar
Leo Gao committed
130
131
    
    @abc.abstractmethod
Leo Gao's avatar
Leo Gao committed
132
    def process_results(self, doc, results):
Leo Gao's avatar
Update  
Leo Gao committed
133
        """Take a single document and the LM results and evaluates, returning a 
134
135
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
136
137
138
139
140

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
141
        """
Leo Gao's avatar
Leo Gao committed
142
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
162
    def fewshot_description(self):
Jason Phang's avatar
checkin  
Jason Phang committed
163
164
        return ""

Jason Phang's avatar
Jason Phang committed
165
    def fewshot_context(self, doc, num_fewshot, provide_description):
Jason Phang's avatar
Jason Phang committed
166
        raw_description = self.fewshot_description()
Jason Phang's avatar
Jason Phang committed
167
        description = (raw_description + "\n===\n\n") if provide_description and raw_description else ""
Leo Gao's avatar
Update  
Leo Gao committed
168
        
169
170
171
172
173
174
        if num_fewshot == 0:
            labeled_examples = ""
        else:
            labeled_examples = "\n\n".join(
                [self.doc_to_text(doc) + self.doc_to_target(doc) for doc in self.fewshot_examples(k=num_fewshot)]
            ) + "\n\n"
Leo Gao's avatar
Update  
Leo Gao committed
175
176

        example = self.doc_to_text(doc).strip()
Leo Gao's avatar
Leo Gao committed
177
178
179
180
181
182
        return description + labeled_examples + example


def mean(arr):
    return sum(arr) / len(arr)

Jason Phang's avatar
Jason Phang committed
183

Jonathan Tow's avatar
Jonathan Tow committed
184
185
186
def median(arr):
    return arr[len(arr) // 2]

Jason Phang's avatar
Jason Phang committed
187

Jonathan Tow's avatar
Jonathan Tow committed
188
189
190
191
192
193
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)

Jason Phang's avatar
Jason Phang committed
194

thefazzer's avatar
thefazzer committed
195
196
197
198
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
Jonathan Tow's avatar
Jonathan Tow committed
199
    fscore = sklearn.metrics.f1_score(golds, preds)
thefazzer's avatar
thefazzer committed
200
201
    return max(fscore)

Jason Phang's avatar
Jason Phang committed
202

thefazzer's avatar
thefazzer committed
203
204
205
206
207
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]
Jason Phang's avatar
Jason Phang committed
208
209

    for doc, pred in zip(docs, preds):
thefazzer's avatar
thefazzer committed
210
211
212
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []
213
214
215

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)
thefazzer's avatar
thefazzer committed
216
217
218
219
            
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

Jason Phang's avatar
Jason Phang committed
220
221
222
223
224
225
226
227
228
229

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


230
231
232
233
req_ret_lens = {
    'loglikelihood': 2
}

Jason Phang's avatar
Jason Phang committed
234

235
236
237
238
class Request:
    def __init__(self, type, args, index=None):
        if type not in req_ret_lens.keys():
            raise NotImplementedError('The request type {} is not implemented!'.format(type))
Leo Gao's avatar
Leo Gao committed
239

240
241
242
243
244
245
246
247
248
249
250
        self.type = type
        self.args = args
        self.index = index
    
    def __iter__(self):
        i = 0
        for i in range(req_ret_lens[self.type]):
            yield Request(self.type, self.args, i)
    
    def __getitem__(self, i):
        return Request(self.type, self.args, i)
Leo Gao's avatar
Leo Gao committed
251

Jason Phang's avatar
Jason Phang committed
252

Leo Gao's avatar
Leo Gao committed
253
254
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
255
256
        def fn(*args):
            return Request(attr, args)
Leo Gao's avatar
Leo Gao committed
257
258
259
260
        return fn


rf = RequestFactory()