utils.py 1.12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from sklearn.metrics import f1_score


def doc_to_choice(doc):
    choices = eval(doc["choices"])
    return choices


def doc_to_text(doc):
    output = """You are a highly knowledgeable and intelligent artificial intelligence 
                model answers multiple-choice questions about '{subject}'
                
                Question: '''{question}'''

                Choices:
                        A: ''{choice1}'''
                        B: ''{choice2}'''
                        C: ''{choice3}'''
                        D: ''{choice4}'''
                       
                Answer:  """
    
    choices = eval(doc["choices"])
    text = output.format(subject=doc['subject'],
                         question=doc['question'],
                         choice1=choices[0],
                         choice2=choices[1],
                         choice3=choices[2],
                         choice4=choices[3])
    return text


def weighted_f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = f1_score(golds, preds, average="weighted")
    return fscore