coqa.py 8.9 KB
Newer Older
Jonathan Tow's avatar
Jonathan Tow committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CoQA dataset.

This `CoQA` adds the "additional_answers" feature that's missing in the original
datasets version:
https://github.com/huggingface/datasets/blob/master/datasets/coqa/coqa.py
"""


import json

import datasets


_CITATION = """\
@misc{reddy2018coqa,
    title={CoQA: A Conversational Question Answering Challenge},
    author={Siva Reddy and Danqi Chen and Christopher D. Manning},
    year={2018},
    eprint={1808.07042},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
CoQA is a large-scale dataset for building Conversational Question Answering
systems. The goal of the CoQA challenge is to measure the ability of machines to
understand a text passage and answer a series of interconnected questions that
appear in a conversation.
"""

_HOMEPAGE = "https://stanfordnlp.github.io/coqa/"

Alain's avatar
Alain committed
47
_LICENSE = "Different licenses depending on the content (see https://stanfordnlp.github.io/coqa/ for details)"
Jonathan Tow's avatar
Jonathan Tow committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

_URLS = {
    "train": "https://nlp.stanford.edu/data/coqa/coqa-train-v1.0.json",
    "validation": "https://nlp.stanford.edu/data/coqa/coqa-dev-v1.0.json",
}

# `additional_answers` are not available in the train set so we fill them with
# empty dicts of the same form.
_EMPTY_ADDITIONAL_ANSWER = {
    "0": [
        {
            "span_start": -1,
            "span_end": -1,
            "span_text": "",
            "input_text": "",
Fabrizio Milo's avatar
Fabrizio Milo committed
63
            "turn_id": -1,
Jonathan Tow's avatar
Jonathan Tow committed
64
65
66
67
68
69
70
71
        }
    ],
    "1": [
        {
            "span_start": -1,
            "span_end": -1,
            "span_text": "",
            "input_text": "",
Fabrizio Milo's avatar
Fabrizio Milo committed
72
            "turn_id": -1,
Jonathan Tow's avatar
Jonathan Tow committed
73
74
75
76
77
78
79
80
        }
    ],
    "2": [
        {
            "span_start": -1,
            "span_end": -1,
            "span_text": "",
            "input_text": "",
Fabrizio Milo's avatar
Fabrizio Milo committed
81
            "turn_id": -1,
Jonathan Tow's avatar
Jonathan Tow committed
82
83
84
85
86
87
88
89
90
91
92
        }
    ],
}


class Coqa(datasets.GeneratorBasedBuilder):
    """CoQA is a large-scale dataset for building Conversational Question Answering systems."""

    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
Fabrizio Milo's avatar
Fabrizio Milo committed
93
94
95
        datasets.BuilderConfig(
            name="coqa", version=VERSION, description="The CoQA dataset."
        ),
Jonathan Tow's avatar
Jonathan Tow committed
96
97
98
99
100
101
102
103
    ]

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "source": datasets.Value("string"),
                "story": datasets.Value("string"),
Fabrizio Milo's avatar
Fabrizio Milo committed
104
105
                "questions": datasets.features.Sequence(
                    {
Jonathan Tow's avatar
Jonathan Tow committed
106
107
                        "input_text": datasets.Value("string"),
                        "turn_id": datasets.Value("int32"),
Fabrizio Milo's avatar
Fabrizio Milo committed
108
109
110
111
                    }
                ),
                "answers": datasets.features.Sequence(
                    {
Jonathan Tow's avatar
Jonathan Tow committed
112
113
114
115
116
                        "span_start": datasets.Value("int32"),
                        "span_end": datasets.Value("int32"),
                        "span_text": datasets.Value("string"),
                        "input_text": datasets.Value("string"),
                        "turn_id": datasets.Value("int32"),
Fabrizio Milo's avatar
Fabrizio Milo committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
                    }
                ),
                "additional_answers": {
                    "0": datasets.features.Sequence(
                        {
                            "span_start": datasets.Value("int32"),
                            "span_end": datasets.Value("int32"),
                            "span_text": datasets.Value("string"),
                            "input_text": datasets.Value("string"),
                            "turn_id": datasets.Value("int32"),
                        }
                    ),
                    "1": datasets.features.Sequence(
                        {
                            "span_start": datasets.Value("int32"),
                            "span_end": datasets.Value("int32"),
                            "span_text": datasets.Value("string"),
                            "input_text": datasets.Value("string"),
                            "turn_id": datasets.Value("int32"),
                        }
                    ),
                    "2": datasets.features.Sequence(
                        {
                            "span_start": datasets.Value("int32"),
                            "span_end": datasets.Value("int32"),
                            "span_text": datasets.Value("string"),
                            "input_text": datasets.Value("string"),
                            "turn_id": datasets.Value("int32"),
                        }
                    ),
                },
            }
        )
Jonathan Tow's avatar
Jonathan Tow committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = {"train": _URLS["train"], "validation": _URLS["validation"]}
        data_dirs = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dirs["train"],
                    "split": datasets.Split.TRAIN,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dirs["validation"],
                    "split": datasets.Split.VALIDATION,
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            data = json.load(f)
            for row in data["data"]:
                id = row["id"]
                source = row["source"]
                story = row["story"]
                questions = [
Fabrizio Milo's avatar
Fabrizio Milo committed
189
                    {"input_text": q["input_text"], "turn_id": q["turn_id"]}
Jonathan Tow's avatar
Jonathan Tow committed
190
191
192
193
194
195
196
197
                    for q in row["questions"]
                ]
                answers = [
                    {
                        "span_start": a["span_start"],
                        "span_end": a["span_end"],
                        "span_text": a["span_text"],
                        "input_text": a["input_text"],
Fabrizio Milo's avatar
Fabrizio Milo committed
198
                        "turn_id": a["turn_id"],
Jonathan Tow's avatar
Jonathan Tow committed
199
200
201
202
203
204
205
206
207
208
209
210
211
                    }
                    for a in row["answers"]
                ]
                if split == datasets.Split.TRAIN:
                    additional_answers = _EMPTY_ADDITIONAL_ANSWER
                else:
                    additional_answers = {
                        "0": [
                            {
                                "span_start": a0["span_start"],
                                "span_end": a0["span_end"],
                                "span_text": a0["span_text"],
                                "input_text": a0["input_text"],
Fabrizio Milo's avatar
Fabrizio Milo committed
212
                                "turn_id": a0["turn_id"],
Jonathan Tow's avatar
Jonathan Tow committed
213
214
215
216
217
218
219
220
221
                            }
                            for a0 in row["additional_answers"]["0"]
                        ],
                        "1": [
                            {
                                "span_start": a1["span_start"],
                                "span_end": a1["span_end"],
                                "span_text": a1["span_text"],
                                "input_text": a1["input_text"],
Fabrizio Milo's avatar
Fabrizio Milo committed
222
                                "turn_id": a1["turn_id"],
Jonathan Tow's avatar
Jonathan Tow committed
223
224
225
226
227
228
229
230
231
                            }
                            for a1 in row["additional_answers"]["1"]
                        ],
                        "2": [
                            {
                                "span_start": a2["span_start"],
                                "span_end": a2["span_end"],
                                "span_text": a2["span_text"],
                                "input_text": a2["input_text"],
Fabrizio Milo's avatar
Fabrizio Milo committed
232
                                "turn_id": a2["turn_id"],
Jonathan Tow's avatar
Jonathan Tow committed
233
234
235
236
237
238
239
240
241
242
                            }
                            for a2 in row["additional_answers"]["2"]
                        ],
                    }
                yield row["id"], {
                    "id": id,
                    "story": story,
                    "source": source,
                    "questions": questions,
                    "answers": answers,
Fabrizio Milo's avatar
Fabrizio Milo committed
243
                    "additional_answers": additional_answers,
Jonathan Tow's avatar
Jonathan Tow committed
244
                }