"official/vision/configs/maskrcnn.py" did not exist on "d991ac0ac88594517bc3055e67e395441b087b94"
hf_causal.py 15.8 KB
Newer Older
Jason Phang's avatar
gpt3  
Jason Phang committed
1
import torch
Xingjian Shi's avatar
Xingjian Shi committed
2
import transformers
Jason Phang's avatar
gpt3  
Jason Phang committed
3

4
import copy
5
from tqdm import tqdm
Jason Phang's avatar
gpt3  
Jason Phang committed
6

7
8
9
import torch.nn.functional as F

from lm_eval import utils
lintangsutawika's avatar
lintangsutawika committed
10
from lm_eval.logger import eval_logger
11
12
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
13

14
15
from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria

16
from accelerate import Accelerator
17
18


19
@register_model("hf-causal")
20
class HFCausalLM(LM):
Fabrizio Milo's avatar
Fabrizio Milo committed
21
22
23
24
25
    def __init__(
        self,
        device="cuda",
        pretrained="gpt2",
        revision="main",
Xingjian Shi's avatar
Xingjian Shi committed
26
        low_cpu_mem_usage=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
27
28
29
30
        subfolder=None,
        tokenizer=None,
        batch_size=1,
    ):
Leo Gao's avatar
Leo Gao committed
31
        super().__init__()
32
33
34
35
36

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
        assert isinstance(batch_size, int)

37
        gpus = torch.cuda.device_count()
38
        
39
        if gpus <= 1:
40
            if device:
41
42
43
                if device not in ["cuda", "cpu"]:
                    device = int(device)
                self._device = torch.device(device)
44
                eval_logger.info(f"Using device '{device}'")
45
            else:
46
47
                eval_logger.info("Device not specified")
                eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
48
49
50
51
52
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
53
54
            self._rank = 0
            self._world_size = 1
55

56
        else:
57
            self._device = "cpu"
58

59
60
61
        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

62
        self.model = transformers.AutoModelForCausalLM.from_pretrained(
Xingjian Shi's avatar
Xingjian Shi committed
63
            pretrained, revision=revision, low_cpu_mem_usage=low_cpu_mem_usage
64
        ).to(self.device)
65
        self.model.eval()
66
         
67
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
Fabrizio Milo's avatar
Fabrizio Milo committed
68
            pretrained if tokenizer is None else tokenizer,
69
            revision=revision,
Fabrizio Milo's avatar
Fabrizio Milo committed
70
        )
71

72
        self.vocab_size = self.tokenizer.vocab_size
73

74
        # multithreading and batching
75
        self.batch_size_per_gpu = batch_size  # todo: adaptive batch size
76

77
        # multigpu support with accelerate
78
        if gpus > 1:
lintangsutawika's avatar
fixes  
lintangsutawika committed
79
            accelerator = Accelerator()
80
            if gpus > accelerator.num_processes:
81
                eval_logger.warning(
lintangsutawika's avatar
fixes  
lintangsutawika committed
82
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
83
84
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
lintangsutawika's avatar
fixes  
lintangsutawika committed
85
                    f"Current run will proceed with {accelerator.num_processes} devices."
86
                )
87
88
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
89
90
91
92
93
94
95
96
                # manually set model to use gpu, for case where many GPUs available but
                # only seek to use one
                self._device = (
                    torch.device(f"cuda:{accelerator.local_process_index}")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
                self.model.to(self.device)
97
            else:
98
                self.model = accelerator.prepare(self.model)
99
100
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator
101

102
                if self.accelerator.is_local_main_process:
103
                    eval_logger.info(f"Using {gpus} devices with data parallelism")
104

105
106
                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
107
        
108
109
110
111
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id
112

113
114
115
    @property
    def max_length(self):
        try:
lintangsutawika's avatar
fixes  
lintangsutawika committed
116
            if hasattr(self, "accelerator"):
117
                return self.accelerator.unwrap_model(self.model).config.n_ctx
118
            else:
119
                return self.model.config.n_ctx
120
121
        except AttributeError:
            # gptneoconfig doesn't have n_ctx apparently
lintangsutawika's avatar
fixes  
lintangsutawika committed
122
123
            if hasattr(self, "accelerator"):
                return self.accelerator.unwrap_model(
124
                    self.model
lintangsutawika's avatar
fixes  
lintangsutawika committed
125
                ).config.max_position_embeddings
126
            else:
127
                return self.model.config.max_position_embeddings
128

129
130
131
    @property
    def max_gen_toks(self):
        return 256
Leo Gao's avatar
Leo Gao committed
132

133
134
    @property
    def batch_size(self):
135
        return self.batch_size_per_gpu
Leo Gao's avatar
Leo Gao committed
136

137
138
139
    @property
    def device(self):
        return self._device
Leo Gao's avatar
Leo Gao committed
140

141
142
143
144
145
146
147
    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size
Leo Gao's avatar
Leo Gao committed
148

149
150
    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=False)
Fabrizio Milo's avatar
Fabrizio Milo committed
151

152
153
154
    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

Leo Gao's avatar
Leo Gao committed
155
156
157
158
159
160
    def _model_call(self, inps):
        """
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call

        returns: a torch tensor of shape [batch, sequence, vocab] with the
161
        logits returned from the model
Leo Gao's avatar
Leo Gao committed
162
        """
163
        with torch.no_grad():
164
            return self.model(inps).logits
165

166
    def _model_generate(self, context, max_length, stop, **generation_kwargs):
167
        # we require users to pass do_sample=True explicitly
168
169
170
        # for non-greedy gen. This should be reevaluated when considering beam search.
        if "do_sample" not in generation_kwargs.keys():
            generation_kwargs["do_sample"] = False
171
172
173
174
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )
175
        if hasattr(self, "accelerator"):
176
            return self.accelerator.unwrap_model(self.model).generate(
177
178
                context,
                max_length=max_length,
179
180
181
                stopping_criteria=stopping_criteria,
                pad_token_id=self.eot_token_id,
                use_cache=True,
182
                **generation_kwargs,
183
184
            )
        else:
185
            return self.model.generate(
186
187
                context,
                max_length=max_length,
188
189
190
                stopping_criteria=stopping_criteria,
                pad_token_id=self.eot_token_id,
                use_cache=True,
191
                **generation_kwargs,
192
            )
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        loglikelihoods = []
lintangsutawika's avatar
fixes  
lintangsutawika committed
211
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
212
213
214
215
216
217
218
219
220
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
221
                )
222
            )
223

224
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]
225

226
227
            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
228

lintangsutawika's avatar
fixes  
lintangsutawika committed
229
            pad_amnt = 0
230
            if self.world_size > 1:
lintangsutawika's avatar
fixes  
lintangsutawika committed
231
232
233
234
                # TODO: Comment on what we do here
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
235
236
                )

237
238
                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
lintangsutawika's avatar
fixes  
lintangsutawika committed
239
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
240
241
242
243
244

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows, disable_tqdm=True
            )

245
246
            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
247
248
249
250
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

251
252
            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

        return loglikelihoods

    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        # TODO: automatic (variable) batch size detection for vectorization
        re_ord = utils.Reorderer(requests, _collate)
        for chunk in utils.chunks(
274
275
            tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))),
            self.batch_size,
276
        ):
lintangsutawika's avatar
fixes  
lintangsutawika committed
277

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
            inps = []
            cont_toks_list = []
            inplens = []

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
297
                # model  \               \
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
                    (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                    dtype=torch.long,
                ).to(self.device)
                (inplen,) = inp.shape

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
                padding_length = (
                    padding_length if padding_length is not None else inplen
                )

                # pad length from seq to padding_length
                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )

                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
                inplens.append(inplen)

            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length
            multi_logits = F.log_softmax(
                self._model_call(batched_inps), dim=-1
            ).cpu()  # [batch, padding_length, vocab]

            for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
                chunk, multi_logits, inps, inplens, cont_toks_list
            ):

                # Slice to original seq length
                contlen = len(cont_toks)
                logits = logits[inplen - contlen : inplen].unsqueeze(
                    0
                )  # [1, seq, vocab]

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

        return re_ord.get_original(res)

    def greedy_until(self, requests):
        # TODO: implement fully general `until` that handles until that are
        #       multiple tokens or that span multiple tokens correctly

        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
            return len(toks), x[0]

        re_ord = utils.Reorderer([req.args for req in requests], _collate)

377
        for context, gen_kwargs in tqdm(re_ord.get_reordered()):
378
            until = None
379
            if isinstance(gen_kwargs, dict):
380
                gen_kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
381
382
383
384
385
386
387
                if "until" in gen_kwargs.keys():
                    until = gen_kwargs.pop("until")
                    if isinstance(until, str):
                        until = [gen_kwargs]
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {until}"
388
                        )
389
            else:
390
391
392
                raise ValueError(
                    f"Expected `gen_kwargs` to be of type `dict` but got {gen_kwargs}"
                )
393
394
395
396
397
398
            if not until:
                until = [self.tok_decode(self.eot_token_id)]
            if "max_gen_toks" in gen_kwargs.keys():
                max_gen_toks = gen_kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks
399

400
401
402
403
404
405
406
            primary_until = until[0]
            # try:
            #     (primary_until,) = self.tok_encode(until[0])
            # except Exception:
            #     # if our primary until would be multiple tokens long, we'll have errors.
            #     # TODO: handling this better will let us stop generating earlier + often.
            #     primary_until = self.eot_token_id
407
408

            context_enc = torch.tensor(
409
                [self.tok_encode(context)[max_gen_toks - self.max_length :]]
410
411
412
            ).to(self.device)

            cont = self._model_generate(
413
414
                context=context_enc,
                max_length=context_enc.shape[1] + max_gen_toks,
415
                stop=primary_until,
416
                **gen_kwargs,
417
418
419
420
421
422
423
424
            )

            s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :])

            for term in until:
                s = s.split(term)[0]

            res.append(s)
425

426
        return re_ord.get_original(res)