superglue.py 9.17 KB
Newer Older
Jason Phang's avatar
Jason Phang committed
1
2
import numpy as np
from tqdm import auto as tqdm_lib
3
from . common import HFTask, simple_accuracy_metric, yesno
Jason Phang's avatar
Jason Phang committed
4
5


6
class BoolQ(HFTask):
Leo Gao's avatar
Leo Gao committed
7
8
    DATASET_PATH = "super_glue"
    DATASET_NAME = "boolq"
Jason Phang's avatar
Jason Phang committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Read the following passages and answer each question with a yes or a no."

    def doc_to_text(self, doc, include_target=True):
        return f"{doc['passage']}\nquestion: {doc['question']}\nanswer: " \
Jason Phang's avatar
Jason Phang committed
24
            + (yesno(doc['label']) if include_target else "")
Jason Phang's avatar
Jason Phang committed
25
26

    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
Jason Phang committed
27
        golds = [doc["label"] for doc in docs]
Jason Phang's avatar
Jason Phang committed
28
29
30
31
32
33
34
35
36
        preds = []
        for doc in docs:
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' yes') > lm.loglikelihood(ctx, ' no'))
        return simple_accuracy_metric(preds=preds, golds=golds)
Jason Phang's avatar
Jason Phang committed
37
38


39
class CommitmentBank(HFTask):
Leo Gao's avatar
Leo Gao committed
40
41
    DATASET_PATH = "super_glue"
    DATASET_NAME = "cb"
Jason Phang's avatar
Jason Phang committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\ttrue, false or neither?\nanswer:".format(
            doc["premise"],
            doc["hypothesis"],
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "true", 1: "neither", 2: "false"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            probs = np.array([
                lm.loglikelihood(ctx, ' true'),
                lm.loglikelihood(ctx, ' neither'),
                lm.loglikelihood(ctx, ' false'),
            ])
            preds.append(np.argmax(probs))
        return simple_accuracy_metric(preds=preds, golds=golds)


82
class Copa(HFTask):
Leo Gao's avatar
Leo Gao committed
83
84
    DATASET_PATH = "super_glue"
    DATASET_NAME = "copa"
Jason Phang's avatar
Jason Phang committed
85
86
87
88
89
90
91
92
93
94
95
96

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        # Drop the period
Jason Phang's avatar
Jason Phang committed
97
98
99
100
101
        connector = {
            "cause": "because",
            "effect": "therefore",
        }[doc["question"]]
        text = doc["premise"].strip()[:-1] + f" {connector} "
Jason Phang's avatar
Jason Phang committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        if include_target:
            correct_choice = doc["choice1"] if doc["label"] == 0 else doc["choice2"]
            # Connect the sentences
            text += self.convert_choice(correct_choice)
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            choice1 = " " + self.convert_choice(doc["choice1"])
            choice2 = " " + self.convert_choice(doc["choice2"])
            preds.append(lm.loglikelihood(ctx, choice2) > lm.loglikelihood(ctx, choice1))
        return simple_accuracy_metric(preds=preds, golds=golds)

    @staticmethod
    def convert_choice(choice):
        return choice[0].lower() + choice[1:]


127
class MultiRC(HFTask):
Leo Gao's avatar
Leo Gao committed
128
129
    DATASET_PATH = "super_glue"
    DATASET_NAME = "multirc"
Jason Phang's avatar
multirc  
Jason Phang committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "READING COMPREHENSION ANSWER KEY"

    def doc_to_text(self, doc, include_target=True):
        return f"{doc['paragraph']}\n\n{doc['question']}\n" \
            + (self.format_answer(answer=doc["answer"], label=doc["label"])
               if include_target else "")

    @staticmethod
    def format_answer(answer, label):
        label_str = "True" if label else "False"
        return f"[{label_str}] {answer}"

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        preds = []
        for doc in docs:
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            true_choice = self.format_answer(answer=doc["answer"], label=True)
            false_choice = self.format_answer(answer=doc["answer"], label=False)
            preds.append(
                lm.loglikelihood(ctx, f' {true_choice}')
                > lm.loglikelihood(ctx, f' {false_choice}')
            )

        # Only count as correct if all answers are labeled correctly for each question
        question_scoring_dict = {}
        for doc, pred in zip(docs, preds):
            question_id = doc["idx"]["question"]
            if question_id not in question_scoring_dict:
                question_scoring_dict[question_id] = []
            gold_label = doc["label"] == 1
            question_scoring_dict[question_id].append(gold_label == pred)
        acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
        return {
            "major": acc,
            "minor": {"acc": acc},
            "higher_is_better": True,
        }


184
class WordsInContext(HFTask):
Leo Gao's avatar
Leo Gao committed
185
186
    DATASET_PATH = "super_glue"
    DATASET_NAME = "wic"
Jason Phang's avatar
Jason Phang committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\n{}\nquestion\tIs the word '{}' used in the same way in the" \
               " two sentences above?\nanswer:".format(
                    doc["sentence1"],
                    doc["sentence2"],
                    doc["sentence1"][doc["start1"]:doc["end1"]],
                )
        if include_target:
            text += " {}".format({0: "no", 1: "yes"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' yes') > lm.loglikelihood(ctx, ' no'))
        return simple_accuracy_metric(preds=preds, golds=golds)


221
class WinogradSchemaChallenge(HFTask):
Leo Gao's avatar
Leo Gao committed
222
223
    DATASET_PATH = "super_glue"
    DATASET_NAME = "wsc"
Jason Phang's avatar
Jason Phang committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def training_docs(self):
        if self.has_training_docs():
            if self._training_docs is None:
                # GPT-3 Paper's format only uses positive examples
                self._training_docs = [
                    doc for doc in
                    self._load_nlp_dataset()["train"]
                    if doc["label"]
                ]
            return self._training_docs

    def fewshot_description(self):
        return "Final Exam with Answer Key\n" \
           "Instructions: Please carefully read the following passages. " \
           "For each passage, you must identify which noun the pronoun marked in *bold*" \
           " refers to.\n====="

    def doc_to_text(self, doc, include_target=True):
        raw_passage = doc["text"]
        passage = (
            raw_passage[:doc["span2_index"]]
            + "*{}*".format(doc["span2_text"])
            + raw_passage[doc["span2_index"] + len(doc["span2_text"]):]
        )
        pronoun = doc["span2_text"]
        text = (
            f"Passage: {passage}\n"
            + f"Question: In the passage above, what does the pronoun \"*{pronoun}*\" refer to?\n"
            + "Answer:"
        )
        if include_target:
            text += " {}".format(doc["span1_text"])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            to_predict = " " + doc["span1_text"]
            num_tokens = len(lm.tokenizer.tokenize(to_predict))
            generated = lm.generate(
                context=ctx,
                max_gen_length=num_tokens,
            )
            preds.append(1 if generated == to_predict else 0)
        return simple_accuracy_metric(preds=preds, golds=golds)