race.py 2.03 KB
Newer Older
1
from . common import HFTask
Leo Gao's avatar
Leo Gao committed
2
3
from ..utils_stream import X, each, apply, join, filt, one
import collections
4
import datasets
Leo Gao's avatar
Leo Gao committed
5
6


7
class RACE(HFTask):
Leo Gao's avatar
Leo Gao committed
8
9
    DATASET_PATH = "race"
    DATASET_NAME = "high"
Leo Gao's avatar
Leo Gao committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

    cache = {}

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def _collate_data(self, set):
        if set in self.cache: return self.cache[set]
        # One big issue with HF's implementation of this dataset: it makes a
        # separate document for each question; meanwhile, in the GPT3 paper it
        # is shown that one document is made per passage.

        r = collections.defaultdict(list)
29
        for item in datasets.load_dataset(path=self.DATASET_PATH, name=self.DATASET_NAME)[set]:
Leo Gao's avatar
Leo Gao committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
            r[item['article']].append(item)
        
        res = list(r.values() >> each(lambda x: {
            'article': x[0]['article'],
            'problems': x >> each(lambda y: {
                'question': y['question'],
                'answer': y['answer'],
                'options': y['options'],
            })
        }))

        self.cache[set] = res
        return res

    def training_docs(self):
        return self._collate_data("train")

    def validation_docs(self):
        return self._collate_data("validation")

    def test_docs(self):
        return self._collate_data("test")

    def fewshot_description(self):
        # TODO: figure out description
        return ""

    def doc_to_text(self, doc, include_target=True):
        r = "Article:\n" + doc['article'] + '\n\n'

Leo Gao's avatar
Leo Gao committed
60
61
62
63
64
        r += doc['problems'] >> apply(enumerate) >> each(
            lambda x: 'Q: ' + x[1]['question'] + '\n\nA:' 
            + ((' ' + x[1]['options'][['A', 'B', 'C', 'D'].index(x[1]['answer'])]) \
                if x[0] != len(doc['problems']) - 1 or include_target else '')) \
            >> join('\n\n')
Leo Gao's avatar
Leo Gao committed
65
66
67
68
69
70

        return r

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        # TODO: implement
        raise NotImplementedError()