base.py 7.41 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import abc
import random
thefazzer's avatar
thefazzer committed
3
import numpy as np
Jonathan Tow's avatar
Jonathan Tow committed
4
import sklearn
Jason Phang's avatar
gpt3  
Jason Phang committed
5

Jason Phang's avatar
Jason Phang committed
6

Leo Gao's avatar
Leo Gao committed
7
8
class LM(abc.ABC):
    @abc.abstractmethod
Leo Gao's avatar
Leo Gao committed
9
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
10
11
12
        """Compute log-likelihood of generating a continuation from a context.
        Downstream tasks should attempt to use loglikelihood instead of other 
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
13

Leo Gao's avatar
Leo Gao committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
        :param requests: list
            A list of pairs (context, continuation)
            context: str
                Context string
            continuation: str
                The continuation over which log likelihood will be calculated. If 
                there is a word boundary, the space should be in the continuation. 
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `contination`
            isgreedy:
                Whether `contination` would be generated by greedy sampling from `context`
        """
        pass

    @abc.abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
32
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
33
34
35
36
37
38
39
40
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
            until: str
                The string sequence to generate until. This string sequence may 
Leo Gao's avatar
Leo Gao committed
41
                span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
42
43
44
45
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
46
        """
Leo Gao's avatar
Leo Gao committed
47
48
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
49
50
51
52
53
54
55
56
57
58
59
    @classmethod
    def create_from_arg_string(cls, arg_string):
        """Constructor method, in case models need additional arguments
        e.g. OpenAI API engine, paths for loading, other params

        :param arg_string: str
            Left up to individual model class to handle

        """
        return cls()

Leo Gao's avatar
Leo Gao committed
60
61

class Dataset(abc.ABC):
Leo Gao's avatar
Leo Gao committed
62
63
    def __init__(self):
        self.download()
Leo Gao's avatar
Leo Gao committed
64
        self._traindocs = None
sdtblck's avatar
sdtblck committed
65
66
67
68
69

    def download(self):
        """Downloads the task dataset if necessary"""
        pass

70
71
    @abc.abstractmethod
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
72
        """Whether the task has a training set"""
73
74
75
76
        pass
    
    @abc.abstractmethod
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
77
78
79
80
81
82
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
83
84
        pass

Leo Gao's avatar
Leo Gao committed
85
86
    @abc.abstractmethod
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
87
88
89
90
91
        """

        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
92
93
94
95
96
97
98
99
100
101
102
        pass
    
    @abc.abstractmethod
    def validation_docs(self):
        pass
    
    @abc.abstractmethod
    def test_docs(self):
        pass
    
    def fewshot_examples(self, k):
Leo Gao's avatar
Leo Gao committed
103
104
105
106
        if self._traindocs is None:
            self._traindocs = list(self.training_docs())

        return random.sample(self._traindocs, k)
Leo Gao's avatar
Leo Gao committed
107
108

    @abc.abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
109
110
111
112
113
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
114
        pass
Leo Gao's avatar
Leo Gao committed
115
116

    @abc.abstractmethod
117
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Leo Gao committed
118
119
120
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

121
122
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
123
        :param ctx: str
124
125
126
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
Leo Gao's avatar
Leo Gao committed
127
        """
Leo Gao's avatar
Leo Gao committed
128
        pass
Leo Gao's avatar
Leo Gao committed
129
130
    
    @abc.abstractmethod
Leo Gao's avatar
Leo Gao committed
131
    def process_results(self, doc, results):
Leo Gao's avatar
Update  
Leo Gao committed
132
        """Take a single document and the LM results and evaluates, returning a 
133
134
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
135
136
137
138
139

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
140
        """
Leo Gao's avatar
Leo Gao committed
141
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
161
    def fewshot_description(self):
Jason Phang's avatar
checkin  
Jason Phang committed
162
163
        return ""

Jason Phang's avatar
Jason Phang committed
164
    def fewshot_context(self, doc, num_fewshot, provide_description):
Jason Phang's avatar
Jason Phang committed
165
        raw_description = self.fewshot_description()
Jason Phang's avatar
Jason Phang committed
166
        description = (raw_description + "\n===\n\n") if provide_description and raw_description else ""
Leo Gao's avatar
Update  
Leo Gao committed
167
        
168
169
170
171
172
173
        if num_fewshot == 0:
            labeled_examples = ""
        else:
            labeled_examples = "\n\n".join(
                [self.doc_to_text(doc) + self.doc_to_target(doc) for doc in self.fewshot_examples(k=num_fewshot)]
            ) + "\n\n"
Leo Gao's avatar
Update  
Leo Gao committed
174
175

        example = self.doc_to_text(doc).strip()
Leo Gao's avatar
Leo Gao committed
176
177
178
179
180
181
        return description + labeled_examples + example


def mean(arr):
    return sum(arr) / len(arr)

Jason Phang's avatar
Jason Phang committed
182

Jonathan Tow's avatar
Jonathan Tow committed
183
184
185
def median(arr):
    return arr[len(arr) // 2]

Jason Phang's avatar
Jason Phang committed
186

Jonathan Tow's avatar
Jonathan Tow committed
187
188
189
190
191
192
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)

Jason Phang's avatar
Jason Phang committed
193

thefazzer's avatar
thefazzer committed
194
195
196
197
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
Jonathan Tow's avatar
Jonathan Tow committed
198
    fscore = sklearn.metrics.f1_score(golds, preds)
thefazzer's avatar
thefazzer committed
199
200
    return max(fscore)

Jason Phang's avatar
Jason Phang committed
201

thefazzer's avatar
thefazzer committed
202
203
204
205
206
def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]
Jason Phang's avatar
Jason Phang committed
207
208

    for doc, pred in zip(docs, preds):
thefazzer's avatar
thefazzer committed
209
210
211
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []
212
213
214

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)
thefazzer's avatar
thefazzer committed
215
216
217
218
            
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

Jason Phang's avatar
Jason Phang committed
219
220
221
222
223
224
225
226
227
228

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


229
230
231
232
req_ret_lens = {
    'loglikelihood': 2
}

Jason Phang's avatar
Jason Phang committed
233

234
235
236
237
class Request:
    def __init__(self, type, args, index=None):
        if type not in req_ret_lens.keys():
            raise NotImplementedError('The request type {} is not implemented!'.format(type))
Leo Gao's avatar
Leo Gao committed
238

239
240
241
242
243
244
245
246
247
248
249
        self.type = type
        self.args = args
        self.index = index
    
    def __iter__(self):
        i = 0
        for i in range(req_ret_lens[self.type]):
            yield Request(self.type, self.args, i)
    
    def __getitem__(self, i):
        return Request(self.type, self.args, i)
Leo Gao's avatar
Leo Gao committed
250

Jason Phang's avatar
Jason Phang committed
251

Leo Gao's avatar
Leo Gao committed
252
253
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
254
255
        def fn(*args):
            return Request(attr, args)
Leo Gao's avatar
Leo Gao committed
256
257
258
259
        return fn


rf = RequestFactory()