regression.py 6.32 KB
Newer Older
gakada's avatar
gakada committed
1
2
3
4
5
6
7
8
9
10
11
import argparse
import json
import os
import subprocess
import time
from pathlib import Path

from lm_eval import tasks, utils


seq2seq_models = ["google/flan-t5-small"]
jonabur's avatar
jonabur committed
12
13
14
15
16
17
causal_models = [
    "gpt2",
    "facebook/opt-125m",
    "EleutherAI/gpt-neo-125m",
    "EleutherAI/pythia-160m",
]
gakada's avatar
gakada committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
model_names = seq2seq_models + causal_models


completion_tasks = ["boolq", "lambada_openai", "winogrande"]
choice_tasks = ["hellaswag", "openbookqa", "piqa"]
perplexity_tasks = ["wikitext"]
generation_tasks = []
task_names = completion_tasks + choice_tasks + perplexity_tasks + generation_tasks


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--branches", default=[])
    parser.add_argument("--models", default=model_names)
    parser.add_argument("--tasks", default=task_names)
    parser.add_argument("--acc_norm", type=bool, default=False)
    parser.add_argument("--perplexity", default=None)
    # TODO: implement num_fewshot and limit per task, e.g. task1:5,task2:1:100,task3::1000
    parser.add_argument("--num_fewshot", type=int, default=0)
    parser.add_argument("--limit", type=float, default=None)
    # TODO: implement hf-auto to pick between causal and seq2seq models so we don't need this
    parser.add_argument("--model", default="hf-causal-experimental")
    # Use whatever is faster here
    parser.add_argument("--model_args", default="use_accelerate=True,load_in_8bit=True")
    parser.add_argument("--batch_size", default="auto")
    return parser.parse_args()


def eval_models(args, branch=None):
    if branch is not None:
        if os.system(f"git checkout {branch}") != 0:
            return {}, 0

    branch = branch or initial_branch

    start_time = time.time()

    results = {}

    for model in args.models:
jonabur's avatar
jonabur committed
58
59
60
61
62
63
64
        model_type = (
            "hf-causal-experimental"
            if model in causal_models
            else "hf-seq2seq"
            if model in seq2seq_models
            else args.model
        )
gakada's avatar
gakada committed
65
66
        model_args = f"pretrained={model},{args.model_args}"
        # TODO: split_and_pad_windows in AutoSeq2SeqLM doesn"t exist, #527
jonabur's avatar
jonabur committed
67
68
69
        tasks = (
            args.tasks
            if model in causal_models or model_type == "hf-causal-experimental"
gakada's avatar
gakada committed
70
            else list(filter(lambda task: task not in perplexity_tasks, args.tasks))
jonabur's avatar
jonabur committed
71
        )
gakada's avatar
gakada committed
72
        # TODO: OOM with auto for seq2seq models, also can OOM with llama
jonabur's avatar
jonabur committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        batch_size = (
            args.batch_size
            if model in causal_models or model_type == "hf-causal-experimental"
            else 64
            if args.batch_size == "auto"
            else args.batch_size
        )
        output_path = (
            f"data/regression/{int(start_time)}-{branch}-{Path(model).name}.json"
        )

        command = (
            f"python3 main.py --model {model_type} --model_args {model_args} --tasks {','.join(tasks)} "
            f"--num_fewshot {args.num_fewshot}{'' if args.limit is None else f' --limit {args.limit}'} "
            f"--batch_size {batch_size} --no_cache --output_path {output_path}"
        )

        print(
            f"{'=' * 80}\nEvaluating {model} on {', '.join(tasks)} at {branch} with:\n\n{command}\n{'=' * 80}"
        )
gakada's avatar
gakada committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

        ret = os.system(command)

        results[model] = json.load(open(output_path)) if ret == 0 else {"results": {}}

    end_time = time.time()

    return results, end_time - start_time


def extract_value(args, results, model, task, err=False):
    if model not in results:
        return 0
    results = results[model]["results"]
    if task not in results:
        return 0
    results = results[task]
    if args.acc_norm and "acc_norm" in results:
        return results["acc_norm"] if not err else results["acc_norm_stderr"]
    if "acc" in results:
        return results["acc"] if not err else results["acc_stderr"]
    if (args.perplexity or "word_perplexity") in results:
        return results[args.perplexity or "word_perplexity"] if not err else 0
    return 0


def format_value(args, results, model, task):
    val = 100 * extract_value(args, results, model, task)
    err = 100 * extract_value(args, results, model, task, err=True)
    return f"{val:.2f}{f' ± {err:.2f}' if err != 0 else ''}"


def format_diff(args, results1, results2, model, task):
    val1 = 100 * extract_value(args, results1, model, task)
    val2 = 100 * extract_value(args, results2, model, task)
    diff = val2 - val1
    return f"**+{diff:.2f}**" if diff > 0 else f"{diff:.2f}"


def main():
    args = parse_args()

jonabur's avatar
jonabur committed
135
136
137
    args.branches = (
        args.branches.split(",") if type(args.branches) == str else args.branches
    )
gakada's avatar
gakada committed
138
    args.models = args.models.split(",") if type(args.models) == str else args.models
jonabur's avatar
jonabur committed
139
140
141
142
143
144
145
146
    args.tasks = (
        tasks.ALL_TASKS
        if args.tasks == "all_tasks"
        else utils.pattern_match(
            args.tasks.split(",") if type(args.tasks) == str else args.tasks,
            tasks.ALL_TASKS,
        )
    )
gakada's avatar
gakada committed
147
148

    global initial_branch
jonabur's avatar
jonabur committed
149
150
151
152
153
    initial_branch = (
        subprocess.check_output("git branch --show-current", shell=True)
        .decode("ascii")
        .strip()
    )
gakada's avatar
gakada committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

    # TODO: implement proper timing for each task
    # TODO: reduce IO by sharing tasks between models?

    results, runtime = eval_models(args)
    print(results, runtime)

    runs = []
    for branch in args.branches:
        runs.append((branch, *eval_models(args, branch)))

    os.system(f"git checkout {initial_branch}")

    print("")
    print(f"|task|{'|'.join(map(lambda model: Path(model).name, args.models))}|")
    print(f"|--|{'--|' * len(args.models)}")
    for task in args.tasks:
jonabur's avatar
jonabur committed
171
172
173
        print(
            f"|{task} ({initial_branch})|{'|'.join(map(lambda model: format_value(args, results, model, task), args.models))}|"
        )
gakada's avatar
gakada committed
174
        for branch, branch_results, branch_runtime in runs:
jonabur's avatar
jonabur committed
175
176
177
178
179
180
            print(
                f"|{task} ({branch})|{'|'.join(map(lambda model: format_value(args, branch_results, model, task), args.models))}|"
            )
            print(
                f"|{task} (diff)|{'|'.join(map(lambda model: format_diff(args, results, branch_results, model, task), args.models))}|"
            )
gakada's avatar
gakada committed
181
182
183
184
185
186
187
188
189
190
191

    print("")
    print("|branch|runtime|%|")
    print("|--|--|--|")
    print(f"|{initial_branch}|{runtime:.1f}s|100%|")
    for branch, _, branch_runtime in runs:
        print(f"|{branch}|{branch_runtime:.1f}s|{100 * branch_runtime / runtime:.2f}%|")


if __name__ == "__main__":
    main()