race.py 5.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
"""
RACE: Large-scale ReAding Comprehension Dataset From Examinations
https://arxiv.org/pdf/1704.04683.pdf

RACE is a large-scale reading comprehension dataset with more than 28,000 passages
and nearly 100,000 questions. The dataset is collected from English examinations
in China, which are designed for middle school and high school students. The dataset
can be served as the training and test sets for machine comprehension.

Homepage: https://www.cs.cmu.edu/~glai1/data/race/
11
12
13
14
"""
import collections
import datasets
import numpy as np
15
from lm_eval.base import PromptSourceTask, rf
Jonathan Tow's avatar
Jonathan Tow committed
16
from lm_eval.metrics import mean
17

18
19

_CITATION = """
20
21
22
23
24
25
26
@article{lai2017large,
    title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},
    author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},
    journal={arXiv preprint arXiv:1704.04683},  
    year={2017}
}
"""
Leo Gao's avatar
Leo Gao committed
27
28
29
30
31
32
33
34


class each:
    def __init__(self, f):
        self.f = f

    def __rrshift__(self, other):
        return list(map(self.f, other))
Leo Gao's avatar
Leo Gao committed
35
36


37
class RACE(PromptSourceTask):
Jonathan Tow's avatar
Jonathan Tow committed
38
    VERSION = 1
Leo Gao's avatar
Leo Gao committed
39
40
    DATASET_PATH = "race"
    DATASET_NAME = "high"
Leo Gao's avatar
Leo Gao committed
41
42

    cache = {}
cjlovering's avatar
cjlovering committed
43
    letter_to_num = {"A": 0, "B": 1, "C": 2, "D": 3}
Leo Gao's avatar
Leo Gao committed
44
45
46
47
48
49
50
51
52
53

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    # def _collate_data(self, set):
    #     if set in self.cache:
    #         return self.cache[set]
    #     # One big issue with HF's implementation of this dataset: it makes a
    #     # separate document for each question; meanwhile, in the GPT3 paper it
    #     # is shown that one document is made per passage.

    #     r = collections.defaultdict(list)
    #     for item in datasets.load_dataset(
    #         path=self.DATASET_PATH, name=self.DATASET_NAME
    #     )[set]:
    #         r[item["article"]].append(item)

    #     res = list(
    #         r.values()
    #         >> each(
    #             lambda x: {
    #                 "article": x[0]["article"],
    #                 "problems": x
    #                 >> each(
    #                     lambda y: {
    #                         "question": y["question"],
    #                         "answer": y["answer"],
    #                         "options": y["options"],
    #                     }
    #                 ),
    #             }
    #         )
    #     )

    #     self.cache[set] = res
    #     return res
Leo Gao's avatar
Leo Gao committed
86
87

    def training_docs(self):
88
        return self.dataset["train"]
Leo Gao's avatar
Leo Gao committed
89
90

    def validation_docs(self):
91
        return self.dataset["validation"]
Leo Gao's avatar
Leo Gao committed
92
93

    def test_docs(self):
94
        return self.dataset["test"]
Leo Gao's avatar
Leo Gao committed
95

Jon Tow's avatar
Jon Tow committed
96
97
    @classmethod
    def get_answer_option(cls, problem):
cjlovering's avatar
cjlovering committed
98
99
        answer = cls.letter_to_num[problem["answer"]]
        return problem["options"][answer]
Jon Tow's avatar
Jon Tow committed
100
101
102

    @classmethod
    def last_problem(cls, doc):
cjlovering's avatar
cjlovering committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        return doc["problems"][-1]

    # def doc_to_text(self, doc):
    #     text = 'Article: ' + doc['article'] + '\n\n'
    #     for problem in doc['problems'][:-1]:
    #         if problem['question'][-6:] == '  _  .':
    #             text += problem['question'][-5:] + self.get_answer_option(problem) + '\n'
    #         else:
    #             question = 'Question: ' + problem['question'] + '\n'
    #             answer = 'Answer: ' + self.get_answer_option(problem) + '\n'
    #             text += question + answer
    #     text += self.last_problem(doc)['question']
    #     return text

    # def doc_to_target(self, doc):
    #     return " " + self.get_answer_option(self.last_problem(doc))

    # def construct_requests(self, doc, ctx):
    #     """Uses RequestFactory to construct Requests and returns an iterable of
    #     Requests which will be sent to the LM.

    #     :param doc:
    #         The document as returned from training_docs, validation_docs, or test_docs.
    #     :param ctx: str
    #         The context string, generated by fewshot_context. This includes the natural
    #         language description, as well as the few shot examples, and the question
    #         part of the document for `doc`.
    #     """
    #     problem = self.last_problem(doc)
    #     ll_choices = [
    #         rf.loglikelihood(ctx, " " + problem["options"][i])[0] for i in range(4)
    #     ]
    #     return ll_choices
Jon Tow's avatar
Jon Tow committed
136

Leo Gao's avatar
Leo Gao committed
137
    def process_results(self, doc, results):
cjlovering's avatar
cjlovering committed
138
139
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
Leo Gao's avatar
Leo Gao committed
140
141
142
143
144
145
146
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
cjlovering's avatar
cjlovering committed
147
148
149
        #
        gold = self.letter_to_num[self.doc_to_target(doc)]
        # gold = self.letter_to_num[self.last_problem(doc)["answer"]]
Jon Tow's avatar
Jon Tow committed
150
        pred = np.argmax(results)
cjlovering's avatar
cjlovering committed
151
        return {"acc": int(pred == gold)}
Leo Gao's avatar
Leo Gao committed
152
153
154
155

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
cjlovering's avatar
cjlovering committed
156
            A dictionary where keys are the names of submetrics and values are
Leo Gao's avatar
Leo Gao committed
157
158
            functions that aggregate a list of metrics
        """
cjlovering's avatar
cjlovering committed
159
        return {"acc": mean}
Leo Gao's avatar
Leo Gao committed
160
161
162
163

    def higher_is_better(self):
        """
        :returns: {str: bool}
cjlovering's avatar
cjlovering committed
164
            A dictionary where keys are the names of submetrics and values are
Leo Gao's avatar
Leo Gao committed
165
166
            whether a higher value of the submetric is better
        """
cjlovering's avatar
cjlovering committed
167
        return {"acc": True}