metrics.py 9.26 KB
Newer Older
&'s avatar
& committed
1
import math
2
from collections.abc import Iterable
&'s avatar
& committed
3
4
5

import numpy as np
import sacrebleu
Jonathan Tow's avatar
Jonathan Tow committed
6
import sklearn.metrics
Leo Gao's avatar
Leo Gao committed
7
import random
&'s avatar
& committed
8

haileyschoelkopf's avatar
haileyschoelkopf committed
9
import evaluate
&'s avatar
& committed
10

haileyschoelkopf's avatar
haileyschoelkopf committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

AGGREGATION_REGISTRY = {}
METRIC_REGISTRY = {}


def register_metric(name):
    # TODO: do we want to enforce a certain interface to registered metrics?
    def decorate(fn):
        assert (
            name not in METRIC_REGISTRY
        ), f"metric named '{name}' conflicts with existing registered metric!"

        METRIC_REGISTRY[name] = fn
        return fn
    
    return decorate


def get_metric(name):

    try:
        return METRIC_REGISTRY[name]
    except KeyError:
        # TODO: change this print to logging?
        print(f"Could not find registered metric '{name}' in lm-eval, \
searching in HF Evaluate library...")
        try:
            metric_object = evaluate.load(name)
            return metric_object.compute
        except:
            raise Warning(
                "{} not found in the evaluate library!".format(name),
                "Please check https://huggingface.co/evaluate-metric",
            )


def register_aggregation(name):
    def decorate(fn):
        assert (
            name not in AGGREGATION_REGISTRY
        ), f"aggregation named '{name}' conflicts with existing registered aggregation!"

        AGGREGATION_REGISTRY[name] = fn
        return fn
    
    return decorate


def get_aggregation(name):

    try:
        return AGGREGATION_REGISTRY[name]
    except KeyError:
        raise Warning(
            "{} not a registered aggregation metric!".format(name),
        )


@register_aggregation("mean")
&'s avatar
& committed
70
71
72
73
def mean(arr):
    return sum(arr) / len(arr)


Leo Gao's avatar
Leo Gao committed
74
def pop_stddev(arr):
Leo Gao's avatar
Leo Gao committed
75
76
77
78
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))


Leo Gao's avatar
Leo Gao committed
79
80
81
82
83
def sample_stddev(arr):
    mu = mean(arr)
    return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))


Leo Gao's avatar
Leo Gao committed
84
def mean_stderr(arr):
Leo Gao's avatar
Leo Gao committed
85
    return sample_stddev(arr) / math.sqrt(len(arr))
Leo Gao's avatar
Leo Gao committed
86
87


haileyschoelkopf's avatar
haileyschoelkopf committed
88
@register_aggregation("median")
&'s avatar
& committed
89
90
91
92
def median(arr):
    return arr[len(arr) // 2]


haileyschoelkopf's avatar
haileyschoelkopf committed
93
@register_metric("matthews_corrcoef")
&'s avatar
& committed
94
95
96
97
98
99
100
def matthews_corrcoef(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    return sklearn.metrics.matthews_corrcoef(golds, preds)


haileyschoelkopf's avatar
haileyschoelkopf committed
101
@register_metric("f1_score")
&'s avatar
& committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
def f1_score(items):
    unzipped_list = list(zip(*items))
    golds = unzipped_list[0]
    preds = unzipped_list[1]
    fscore = sklearn.metrics.f1_score(golds, preds)

    return np.max(fscore)


def acc_all(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
118
        paragraph_id = doc["idx"]["paragraph"]
&'s avatar
& committed
119
        question_id = doc["idx"]["question"]
120
121
        if (paragraph_id, question_id) not in question_scoring_dict:
            question_scoring_dict[(paragraph_id, question_id)] = []
&'s avatar
& committed
122
123
124

        gold_label = doc["label"] == 1

125
        question_scoring_dict[(paragraph_id, question_id)].append(gold_label == pred)
&'s avatar
& committed
126
127
128
    acc = np.mean([int(all(x)) for x in question_scoring_dict.values()])
    return acc

129

Leo Gao's avatar
Leo Gao committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def acc_all_stderr(items):
    # Only count as correct if all answers are labeled correctly for each question
    question_scoring_dict = {}
    preds = list(zip(*items))[0]
    docs = list(zip(*items))[1]

    for doc, pred in zip(docs, preds):
        question_id = doc["idx"]["question"]
        if question_id not in question_scoring_dict:
            question_scoring_dict[question_id] = []

        gold_label = doc["label"] == 1
        question_scoring_dict[question_id].append(gold_label == pred)

    acc = mean_stderr([int(all(x)) for x in question_scoring_dict.values()])
    return acc

&'s avatar
& committed
147
148
149
150
151
152
153
154
155
156

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """Compute max metric between prediction and each ground truth."""
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


haileyschoelkopf's avatar
haileyschoelkopf committed
157
@register_metric("perplexity")
&'s avatar
& committed
158
159
160
161
def perplexity(items):
    return math.exp(-mean(items))


Leo Gao's avatar
Leo Gao committed
162
163
164
165
def weighted_mean(items):
    a, b = zip(*items)
    return sum(a) / sum(b)

166

haileyschoelkopf's avatar
haileyschoelkopf committed
167
@register_metric("weighted_perplexity")
Leo Gao's avatar
Leo Gao committed
168
169
170
def weighted_perplexity(items):
    return math.exp(-weighted_mean(items))

Fabrizio Milo's avatar
Fabrizio Milo committed
171

172
173
174
def bits_per_byte(items):
    return -weighted_mean(items) / math.log(2)

Leo Gao's avatar
Leo Gao committed
175

haileyschoelkopf's avatar
haileyschoelkopf committed
176
@register_metric("bleu")
&'s avatar
& committed
177
178
179
180
181
182
183
184
185
186
187
def bleu(items):
    """The Bilingual Evaluation Understudy Score, or BLEU for short, is a metric
    for evaluating a generated sentence to a reference sentence. It counts matching
    n-grams in the candidate translation to n-grams in the reference text, where
    1-gram or unigram would be each token and a bigram comparison would be each
    word pair. The comparison is made regardless of word order
    Source: https://machinelearningmastery.com/calculate-bleu-score-for-text-python/
    Paper: https://www.aclweb.org/anthology/P02-1040/

    Higher is better
    """
&'s avatar
metrics  
& committed
188
189
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
190
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
191
192
    return sacrebleu.corpus_bleu(preds, refs).score

&'s avatar
& committed
193

haileyschoelkopf's avatar
haileyschoelkopf committed
194
@register_metric("chrf")
&'s avatar
& committed
195
196
197
198
199
200
201
202
def chrf(items):
    """chrF++ is a tool for automatic evaluation of machine translation output
    based on character n-gram precision and recall enhanced with word n-grams.
    Source: https://github.com/m-popovic/chrF
    Paper: https://www.aclweb.org/anthology/W15-3049.pdf

    Higher is better  # TODO I think
    """
&'s avatar
metrics  
& committed
203
204
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
205
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
206
207
    return sacrebleu.corpus_chrf(preds, refs).score

&'s avatar
& committed
208

haileyschoelkopf's avatar
haileyschoelkopf committed
209
@register_metric("ter")
&'s avatar
& committed
210
211
212
213
214
215
216
217
218
def ter(items):
    """Translation Error Rate is an error metric for machine translation that
    measures the number of edits required to change a system output into one
    of the references
    Source: http://www.cs.umd.edu/~snover/tercom/
    Paper: http://mt-archive.info/AMTA-2006-Snover.pdf

    Lower is better
    """
&'s avatar
metrics  
& committed
219
220
    refs = list(zip(*items))[0]
    preds = list(zip(*items))[1]
&'s avatar
& committed
221
    refs, preds = _sacreformat(refs, preds)
&'s avatar
metrics  
& committed
222
223
224
    return sacrebleu.corpus_ter(preds, refs).score


&'s avatar
& committed
225
226
227
228
def is_non_str_iterable(obj):
    return isinstance(obj, Iterable) and not isinstance(obj, str)


&'s avatar
& committed
229
def _sacreformat(refs, preds):
&'s avatar
metrics  
& committed
230
    """Format refs and preds for sacrebleu corpus calculation. It is very particular"""
&'s avatar
& committed
231
    # Sacrebleu expects (List[str], List[List[str])
&'s avatar
metrics  
& committed
232
233
    #   e.g. sacrebleu.corpus_bleu([pred_t], [[ref1_stream], [ref2_stream], ...])

&'s avatar
& committed
234
235
236
237
238
239
    # Note [ref1_stream] is the first reference for each pred.
    # So lists are size N and (M, N) for N preds and M possible refs for each pred
    # This is a different order of dimensions that I would expect

    # We expect refs to be List[str] or List[List[str]], the outer list corresponding to preds
    # Must become List[List[str]] with the inner list corresponding to preds
&'s avatar
& committed
240
    if not is_non_str_iterable(refs):
&'s avatar
metrics  
& committed
241
        refs = list(refs)
&'s avatar
& committed
242
    if not is_non_str_iterable(refs[0]):
&'s avatar
metrics  
& committed
243
        refs = [[ref] for ref in refs]
&'s avatar
& committed
244
245
    refs = list(zip(*refs))
    # Note the number of refs in each ref list much match the number of preds
&'s avatar
metrics  
& committed
246

&'s avatar
& committed
247
    # We expect preds to be List[str] or List[List[str]]. Must become List[str]
&'s avatar
& committed
248
    if not is_non_str_iterable(preds):
&'s avatar
metrics  
& committed
249
        preds = list(preds)
&'s avatar
& committed
250
    if is_non_str_iterable(preds[0]):
&'s avatar
& committed
251
252
        assert len(preds[0]) == 1, f"Pred must be a str, was {preds[0]}"
        preds = [pred[0] for pred in preds]
&'s avatar
metrics  
& committed
253
254

    return refs, preds
Leo Gao's avatar
Leo Gao committed
255

Fabrizio Milo's avatar
Fabrizio Milo committed
256

257
# stderr stuff
Leo Gao's avatar
Leo Gao committed
258

Fabrizio Milo's avatar
Fabrizio Milo committed
259

Leo Gao's avatar
Leo Gao committed
260
261
262
263
class _bootstrap_internal:
    def __init__(self, f, n):
        self.f = f
        self.n = n
264

Leo Gao's avatar
Leo Gao committed
265
266
267
268
269
270
271
272
273
    def __call__(self, v):
        i, xs = v
        rnd = random.Random()
        rnd.seed(i)
        res = []
        for _ in range(self.n):
            res.append(self.f(rnd.choices(xs, k=len(xs))))
        return res

Leo Gao's avatar
Leo Gao committed
274

275
def bootstrap_stderr(f, xs, iters):
Leo Gao's avatar
Leo Gao committed
276
    import multiprocessing as mp
Fabrizio Milo's avatar
Fabrizio Milo committed
277

Leo Gao's avatar
Leo Gao committed
278
    pool = mp.Pool(mp.cpu_count())
Leo Gao's avatar
Leo Gao committed
279
    # this gives a biased estimate of the stderr (i.e w/ the mean, it gives something
Fabrizio Milo's avatar
Fabrizio Milo committed
280
    # equivalent to stderr calculated without Bessel's correction in the stddev.
Leo Gao's avatar
Leo Gao committed
281
282
283
284
    # Unfortunately, I haven't been able to figure out what the right correction is
    # to make the bootstrap unbiased - i considered multiplying by sqrt(n/(n-1)) but
    # that would be ad-hoc and I can't prove that that would actually be an unbiased estimator)
    # Thankfully, shouldn't matter because our samples are pretty big usually anyways
Leo Gao's avatar
Leo Gao committed
285
    res = []
286
    chunk_size = min(1000, iters)
Leo Gao's avatar
Leo Gao committed
287
    from tqdm import tqdm
Fabrizio Milo's avatar
Fabrizio Milo committed
288

Leo Gao's avatar
Leo Gao committed
289
    print("bootstrapping for stddev:", f.__name__)
Fabrizio Milo's avatar
Fabrizio Milo committed
290
291
    for bootstrap in tqdm(
        pool.imap(
292
            _bootstrap_internal(f, chunk_size),
Fabrizio Milo's avatar
Fabrizio Milo committed
293
294
295
296
            [(i, xs) for i in range(iters // chunk_size)],
        ),
        total=iters // chunk_size,
    ):
Leo Gao's avatar
Leo Gao committed
297
        # sample w replacement
Leo Gao's avatar
Leo Gao committed
298
        res.extend(bootstrap)
Leo Gao's avatar
Leo Gao committed
299

Leo Gao's avatar
Leo Gao committed
300
    pool.close()
Leo Gao's avatar
Leo Gao committed
301
    return sample_stddev(res)
Leo Gao's avatar
Leo Gao committed
302
303


304
def stderr_for_metric(metric, bootstrap_iters):
Leo Gao's avatar
Leo Gao committed
305
306
307
308
309
310
311
312
313
314
315
    bootstrappable = [
        median,
        matthews_corrcoef,
        f1_score,
        perplexity,
        bleu,
        chrf,
        ter,
    ]

    if metric in bootstrappable:
316
        return lambda x: bootstrap_stderr(metric, x, iters=bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
317

Fabrizio Milo's avatar
Fabrizio Milo committed
318
    stderr = {mean: mean_stderr, acc_all: acc_all_stderr}
Leo Gao's avatar
Leo Gao committed
319

Leo Gao's avatar
Leo Gao committed
320
    return stderr.get(metric, None)
Jonathan Tow's avatar
Jonathan Tow committed
321
322
323
324


def yesno(x):
    if x:
Fabrizio Milo's avatar
Fabrizio Milo committed
325
        return "yes"
Jonathan Tow's avatar
Jonathan Tow committed
326
    else:
Fabrizio Milo's avatar
Fabrizio Milo committed
327
        return "no"