triviaqa.py 6.04 KB
Newer Older
Jonathan Tow's avatar
Jonathan Tow committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Custom TriviaQA because HF version sanitizes the dataset differently.
jon-tow's avatar
jon-tow committed
16
# https://github.com/huggingface/datasets/blob/9977ade72191ff0b6907ec63935448c6269a91a1/datasets/trivia_qa/trivia_qa.py#L285
Jon Tow's avatar
Jon Tow committed
17
"""TriviaQA (Unfiltered Raw) dataset."""
Jonathan Tow's avatar
Jonathan Tow committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


import json
import os

import datasets


_CITATION = """\
@InProceedings{JoshiTriviaQA2017,
    author = {Joshi, Mandar and Choi, Eunsol and Weld, Daniel S. and Zettlemoyer, Luke},
    title = {TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension},
    booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics},
    month = {July},
    year = {2017},
    address = {Vancouver, Canada},
    publisher = {Association for Computational Linguistics},
}
"""

_DESCRIPTION = """\
TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence
triples. TriviaQA includes 95K question-answer pairs authored by trivia enthusiasts
and independently gathered evidence documents, six per question on average, that provide
high quality distant supervision for answering the questions.
"""

_HOMEPAGE = "https://nlp.cs.washington.edu/triviaqa/"

jon-tow's avatar
jon-tow committed
47
_LICENSE = "Apache License 2.0"
Jonathan Tow's avatar
Jonathan Tow committed
48

49
_URLS = "https://nlp.cs.washington.edu/triviaqa/data/triviaqa-unfiltered.tar.gz"
Jonathan Tow's avatar
Jonathan Tow committed
50
51


jon-tow's avatar
jon-tow committed
52
class Triviaqa(datasets.GeneratorBasedBuilder):
Fabrizio Milo's avatar
Fabrizio Milo committed
53
    """TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence triples"""
Jonathan Tow's avatar
Jonathan Tow committed
54

55
    VERSION = datasets.Version("0.0.2")
Jonathan Tow's avatar
Jonathan Tow committed
56
57
58

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
Fabrizio Milo's avatar
Fabrizio Milo committed
59
60
            name="triviaqa", version=VERSION, description="The TriviaQA dataset"
        ),
Jonathan Tow's avatar
Jonathan Tow committed
61
62
63
64
65
    ]

    def _info(self):
        features = datasets.Features(
            {
jon-tow's avatar
jon-tow committed
66
67
                "question_id": datasets.Value("string"),
                "question_source": datasets.Value("string"),
Jonathan Tow's avatar
Jonathan Tow committed
68
69
                "question": datasets.Value("string"),
                "answer": {
Fabrizio Milo's avatar
Fabrizio Milo committed
70
                    "aliases": datasets.features.Sequence(
Jonathan Tow's avatar
Jonathan Tow committed
71
72
                        datasets.Value("string"),
                    ),
Fabrizio Milo's avatar
Fabrizio Milo committed
73
                    "value": datasets.Value("string"),
jon-tow's avatar
jon-tow committed
74
75
76
77
78
79
80
81
82
83
84
                },
                "search_results": datasets.features.Sequence(
                    {
                        "description": datasets.Value("string"),
                        "filename": datasets.Value("string"),
                        "rank": datasets.Value("int32"),
                        "title": datasets.Value("string"),
                        "url": datasets.Value("string"),
                        "search_context": datasets.Value("string"),
                    }
                ),
Jonathan Tow's avatar
Jonathan Tow committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
103
                    "filepath": os.path.join(data_dir, "triviaqa-unfiltered", "unfiltered-web-train.json"),
Jonathan Tow's avatar
Jonathan Tow committed
104
105
106
107
108
109
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
110
                    "filepath": os.path.join(data_dir, "triviaqa-unfiltered", "unfiltered-web-dev.json"),
Jonathan Tow's avatar
Jonathan Tow committed
111
112
113
114
115
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
jon-tow's avatar
jon-tow committed
116
    def _generate_examples(self, filepath):
Jonathan Tow's avatar
Jonathan Tow committed
117
        with open(filepath, encoding="utf-8") as f:
118
119
            json_data = json.load(f)['Data']
            for key, data in enumerate(json_data):
jon-tow's avatar
jon-tow committed
120
121
122
123
                search_results = []
                for search_result in data["SearchResults"]:
                    search_results.append(
                        {
Fabrizio Milo's avatar
Fabrizio Milo committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
                            "description": search_result["Description"]
                            if "Description" in search_result
                            else "",
                            "filename": search_result["Filename"]
                            if "Filename" in search_result
                            else "",
                            "rank": search_result["Rank"]
                            if "Rank" in search_result
                            else -1,
                            "title": search_result["Title"]
                            if "Title" in search_result
                            else "",
                            "url": search_result["Url"]
                            if "Url" in search_result
                            else "",
                            "search_context": search_result["SearchContext"]
                            if "SearchContext" in search_result
                            else "",
jon-tow's avatar
jon-tow committed
142
143
                        }
                    )
Jonathan Tow's avatar
Jonathan Tow committed
144
                yield key, {
jon-tow's avatar
jon-tow committed
145
146
                    "question_id": data["QuestionId"],
                    "question_source": data["QuestionSource"],
Jonathan Tow's avatar
Jonathan Tow committed
147
148
149
                    "question": data["Question"],
                    "answer": {
                        "aliases": data["Answer"]["Aliases"],
Jon Tow's avatar
Jon Tow committed
150
                        "value": data["Answer"]["Value"],
jon-tow's avatar
jon-tow committed
151
152
                    },
                    "search_results": search_results,
Jonathan Tow's avatar
Jonathan Tow committed
153
                }