winogrande.py 4.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
WinoGrande: An Adversarial Winograd Schema Challenge at Scale
https://arxiv.org/pdf/1907.10641.pdf

WinoGrande is a collection of 44k problems, inspired by Winograd Schema Challenge
(Levesque, Davis, and Morgenstern 2011), but adjusted to improve the scale and
robustness against the dataset-specific bias. Formulated as a fill-in-a-blank
task with binary options, the goal is to choose the right option for a given
sentence which requires commonsense reasoning.

NOTE: This evaluation of Winogrande uses partial evaluation as described by
Trinh & Le in Simple Method for Commonsense Reasoning (2018). 
See: https://arxiv.org/abs/1806.02847

Homepage: https://leaderboard.allenai.org/winogrande/submissions/public
16
17
18
19
20
"""
import numpy as np
from . common import HFTask
from lm_eval.base import rf
from ..metrics import mean
21

22
23

_CITATION = """
24
25
26
27
28
29
30
@article{sakaguchi2019winogrande,
    title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
    author={Sakaguchi, Keisuke and Bras, Ronan Le and Bhagavatula, Chandra and Choi, Yejin},
    journal={arXiv preprint arXiv:1907.10641},
    year={2019}
}
"""
31

Charles Foster's avatar
Charles Foster committed
32
33

class Winogrande(HFTask):
Leo Gao's avatar
Leo Gao committed
34
    VERSION = 0
Charles Foster's avatar
Charles Foster committed
35
36
37
    DATASET_PATH = "winogrande"
    DATASET_NAME = "winogrande_xl"

38
39
    answer_to_num = {'1': 0, '2': 1}

Charles Foster's avatar
Charles Foster committed
40
41
42
43
44
45
46
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
47
        return False
Charles Foster's avatar
Charles Foster committed
48

49
50
    def doc_to_text(self, doc):
        return self.partial_context(doc, doc["option" + doc["answer"]])
Charles Foster's avatar
Charles Foster committed
51

52
    @classmethod
53
54
    def partial_context(cls, doc, option):
        # Substitute the pronoun in the sentence with the specified option
55
56
        # and ignore everything after.
        pronoun_loc = doc["sentence"].index("_")
57
58
59
        return doc["sentence"][:pronoun_loc] + option

    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
60
        return self.partial_target(doc)
61
62
63
64
65

    @classmethod
    def partial_target(cls, doc):
        # The target is everything after the document specified pronoun.
        pronoun_loc = doc["sentence"].index("_") + 1
Leo Gao's avatar
Leo Gao committed
66
        return " " + doc["sentence"][pronoun_loc:].strip()
67

Leo Gao's avatar
Leo Gao committed
68
    def construct_requests(self, doc, ctx):
69
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
70
        Requests which will be sent to the LM.
71

Leo Gao's avatar
Leo Gao committed
72
73
74
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
75
            The context string, generated by fewshot_context. This includes the natural
Leo Gao's avatar
Leo Gao committed
76
            language description, as well as the few shot examples, and the question
77
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
78
        """
79
        target = self.partial_target(doc)
80
        lls = []
81
82
83
        for option in [doc["option1"], doc["option2"]]:
            partial_ctx = self.partial_context(doc, option)
            full_ctx = self.append_context(ctx, partial_ctx)
84
85
            lls.append(rf.loglikelihood(full_ctx, target)[0])
        return lls
86
87
88

    @classmethod
    def append_context(cls, ctx, partial_ctx):
89
        ctx = ctx.split("\n\n")  # Each fewshot context is on its own new line.
90
91
        ctx.pop()  # Remove the correct context put in by `doc_to_text`.
        return "\n\n".join([*ctx, partial_ctx]) if ctx else partial_ctx
92

Leo Gao's avatar
Leo Gao committed
93
    def process_results(self, doc, results):
94
95
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
Leo Gao's avatar
Leo Gao committed
96
97
98
99
100
101
102
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
103
        return {
104
            "acc": np.argmax(results) == self.answer_to_num[doc["answer"]]
105
        }
Leo Gao's avatar
Leo Gao committed
106
107
108
109

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
110
            A dictionary where keys are the names of submetrics and values are
Leo Gao's avatar
Leo Gao committed
111
112
            functions that aggregate a list of metrics
        """
113
114
115
        return {
            "acc": mean
        }
Leo Gao's avatar
Leo Gao committed
116
117
118
119

    def higher_is_better(self):
        """
        :returns: {str: bool}
120
            A dictionary where keys are the names of submetrics and values are
Leo Gao's avatar
Leo Gao committed
121
122
            whether a higher value of the submetric is better
        """
123
124
125
        return {
            "acc": True
        }