"configs/datasets/mbpp/sanitized_mbpp_passk_gen_830460.py" did not exist on "7d346000bb8f1f7611f88dc8e003bdf8c9ae3ece"
coqa.py 6.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
"""
CoQA: A Conversational Question Answering Challenge
https://arxiv.org/pdf/1808.07042.pdf

CoQA is a large-scale dataset for building Conversational Question Answering 
systems. The goal of the CoQA challenge is to measure the ability of machines to 
understand a text passage and answer a series of interconnected questions that 
appear in a conversation.

Homepage: https://stanfordnlp.github.io/coqa/
11
12
13
14
15
16
17
18
"""
import os
import json
import transformers.data.metrics.squad_metrics as squad_metrics
from lm_eval.base import Task, rf, mean
from ..utils import sh
from itertools import zip_longest
from best_download import download_file
19

20
21

_CITATION = """
22
23
24
25
26
27
28
29
30
@misc{reddy2018coqa,
    title={CoQA: A Conversational Question Answering Challenge},
    author={Siva Reddy and Danqi Chen and Christopher D. Manning},
    year={2018},
    eprint={1808.07042},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""
31

32

33
class CoQA(Task):
Leo Gao's avatar
Leo Gao committed
34
    VERSION = 1
thefazzer's avatar
thefazzer committed
35

sdtblck's avatar
sdtblck committed
36
    def download(self):
37
38
39
40
        coqa_train_filepath = 'data/coqa/coqa-train-v1.0.json'
        coqa_dev_filepath = 'data/coqa/coqa-dev-v1.0.json'

        sh ("""mkdir -p data/coqa""")
41

42
43
        download_file("http://downloads.cs.stanford.edu/nlp/data/coqa/coqa-train-v1.0.json", local_file=coqa_train_filepath, expected_checksum="b0fdb2bc1bd38dd3ca2ce5fa2ac3e02c6288ac914f241ac409a655ffb6619fa6")
        download_file("http://downloads.cs.stanford.edu/nlp/data/coqa/coqa-dev-v1.0.json", local_file=coqa_dev_filepath, expected_checksum="dfa367a9733ce53222918d0231d9b3bedc2b8ee831a2845f62dfc70701f2540a")
sdtblck's avatar
sdtblck committed
44

45
46
47
48
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
Anish Thite's avatar
Anish Thite committed
49
        return True
Jason Phang's avatar
Jason Phang committed
50
51
52
53

    def has_test_docs(self):
        return False

54
    def training_docs(self):
55
        return json.load(open('data/coqa/coqa-train-v1.0.json'))['data']
56
57

    def validation_docs(self):
thefazzer's avatar
thefazzer committed
58
        return json.load(open('data/coqa/coqa-dev-v1.0.json'))['data']
59
60

    def test_docs(self):
Leo Gao's avatar
Leo Gao committed
61
        pass
62

Leo Gao's avatar
Leo Gao committed
63
    def doc_to_text(self, doc):
thefazzer's avatar
thefazzer committed
64
65
        # Given a passage p, the conversation history {q1, a1, . . . qi−1, ai−1} 
        # and a question qi, the task is to predict the answer ai
66
        doc_text = doc["story"] + '\n\n'
thefazzer's avatar
thefazzer committed
67
        for (q, a) in zip_longest(doc["questions"], doc["answers"][:-1]):   # omit target answer ai
68
            question = f"Q: {q['input_text']}" + '\n\n'
Leo Gao's avatar
Leo Gao committed
69
            answer = f"A: {a['input_text']}" + '\n\n' if a is not None else "A:"
70
71
            doc_text += question + answer
        return doc_text
thefazzer's avatar
thefazzer committed
72
        
73
74
    @classmethod
    def get_answers(cls, doc, turn_id):
thefazzer's avatar
thefazzer committed
75
        # Returns unique answers and valid alternatives (Some questions in CoQA have multiple valid answers).
76
77
78
79
        answers = []
        answer_forturn = doc["answers"][turn_id - 1]["input_text"]
        answers.append(answer_forturn)
        
thefazzer's avatar
thefazzer committed
80
81
82
83
84
        additional_answers = doc.get("additional_answers")
        if additional_answers:
            for key in additional_answers:
                additional_answer_for_turn = additional_answers[key][turn_id - 1]["input_text"]
                if additional_answer_for_turn.lower() not in map(str.lower, answers):
85
86
                    answers.append(additional_answer_for_turn)
        return answers
thefazzer's avatar
thefazzer committed
87
    
thefazzer's avatar
thefazzer committed
88
89
90
91
92
93
94
95
96
97
98
99
100
    @classmethod
    def get_answer_choice(self, raw_text):
        # Function maps answers to CoQA answer categories
        # ~ 1/5 of the CoQA answers are Yes/No 
        # ~ 2/3 of the CoQA answers are span-based
        # (answers overlap with the passage ignoring punctuation and case mismatch)
        if raw_text == "unknown":
            return '0'
        if squad_metrics.normalize_answer(raw_text) == "yes":
            return '1'
        if squad_metrics.normalize_answer(raw_text) == "no":
            return '2'
        return '3' # Not a yes/no question
Leo Gao's avatar
Leo Gao committed
101

102
103
    @staticmethod
    def compute_scores(gold_list, pred):
thefazzer's avatar
thefazzer committed
104
105
        # tests for exact match and on the normalised answer (compute_exact)
        # test for overlap (compute_f1)
106
107
108
109
110
        f1_sum = 0.0
        em_sum = 0.0
        if len(gold_list) > 1:
            for i in range(len(gold_list)):
                gold_answers = gold_list[0:i] + gold_list[i + 1:]
thefazzer's avatar
thefazzer committed
111
                # predictions compared against (n) golds and take maximum
112
113
114
115
116
117
118
119
                em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_answers)
                f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_answers)
        else:
            em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_list)
            f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_list)

        return {'em': em_sum / max(1, len(gold_list)), 'f1': f1_sum / max(1, len(gold_list))}

thefazzer's avatar
thefazzer committed
120
121
122
123
124
    def doc_to_target(self, doc, turnid=None):
        # Default to prediction of last turn.
        if turnid is None:
            turnid = len(doc["questions"])
        raw_text = doc['answers'][turnid - 1]["input_text"]
Leo Gao's avatar
Leo Gao committed
125
        return " " + raw_text
thefazzer's avatar
thefazzer committed
126

Leo Gao's avatar
Leo Gao committed
127
128
129
130
131
132
133
134
135
136
137
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
138
        cont_request = rf.greedy_until(ctx, ['\nQ:'])
139
        return cont_request
thefazzer's avatar
thefazzer committed
140

Leo Gao's avatar
Leo Gao committed
141
142
143
144
145
146
147
148
149
150
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
151
        turn_id = len(doc["questions"])
152
        gold_list = self.get_answers(doc, turn_id)
153
        pred = results[0].strip().split('\n')[0]
154

thefazzer's avatar
thefazzer committed
155
        scores = self.compute_scores(gold_list, pred)
156

thefazzer's avatar
thefazzer committed
157
        return {
thefazzer's avatar
thefazzer committed
158
159
            "f1": scores['f1'],
            "em": scores['em'],
thefazzer's avatar
thefazzer committed
160
        }
161
162

    def higher_is_better(self):
163
        return {
164
165
            "f1": True,
            "em": True,
166
        }
Leo Gao's avatar
Leo Gao committed
167

168
    def aggregation(self):
169
        return {
170
171
            "f1": mean,
            "em": mean,
Leo Gao's avatar
Leo Gao committed
172
        }