cbt.py 4.31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
The Children’s Book Test (CBT) from the paper:
https://research.fb.com/wp-content/uploads/2016/11/the_goldilocks_principle_reading_children_s_books_with_explicit_memory_representations.pdf

The Children's Book Test (CBT) is test of how well language models capture 
meaning in children's books. Unlike standard language modelling benchmarks,
it distinguishes the task of predicting syntactic function words from that
of predicting lower-frequency words, which carry greater semantic content.

NOTE: This evaluation is based on the (context + query) question-answering variant
used by the Recurrent Language Models described in the paper. See section 4.4.

Homepage: https://github.com/facebookresearch/ParlAI/tree/main/parlai/tasks/cbt
"""
15
16
17
18
19
20
import numpy as np
from lm_eval.base import rf
from lm_eval.metrics import mean
from .common import HFTask


21
22
23
24
25
26
27
28
29
30
31
32
_CITATION = """
@misc{hill2016goldilocks,
    title={The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations}, 
    author={Felix Hill and Antoine Bordes and Sumit Chopra and Jason Weston},
    year={2016},
    eprint={1511.02301},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""


33
class CBTBase(HFTask):
34
    VERSION = 0
35
36
37
    DATASET_PATH = "cbt"
    DATASET_NAME = None

Leo Gao's avatar
Leo Gao committed
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    def detokenize(self, text):
        text = text.replace(" '", "'")
        text = text.replace(" \n", "\n")
        text = text.replace("\n ", "\n")
        text = text.replace(" n't", "n't")
        text = text.replace("`` ", '"')
        text = text.replace("''", '"')
        # punctuation
        text = text.replace(" :", ":")
        text = text.replace(" ;", ";")
        text = text.replace(" !", "!")
        text = text.replace(" ?", "?")
        text = text.replace(" ,", ",")
        text = text.replace(" .", ".")
        return text

    def doc_to_text(self, doc):
        passage = " ".join(doc["sentences"])
        text = "Passage: " + passage + "\nQuestion: " + doc["question"]
        return self.detokenize(text)

    def doc_to_target(self, doc):
        return ""

    def fewshot_examples(self, k, rnd):
        assert k == 0, f"CBT is only implemented for the zero-shot setting. Given k={k}."
        return super().fewshot_examples(k, rnd)

    def construct_requests(self, doc, ctx):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
        lls = []
        for option in doc["options"]:
            # Following Section 4.4 "Recurrent Language Models" in the CBT paper:
            # "we rank candidate [option] c based on p(q1 . . . qk−1, c, qk+1 . . . ql)
            # rather than simply p(q1 . . . qk−1, c)."
            lls.append(rf.loglikelihood("", ctx.replace("XXXXX", option))[0])
        return lls

    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        gold = doc["options"].index(doc["answer"])
        pred = np.argmax(results)
        return {
            "acc": pred == gold
        }

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
        """
        return {
            "acc": mean
        }

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        return {
            "acc": True
        }


class CBTCN(CBTBase):
    DATASET_NAME = "CN"


class CBTNE(CBTBase):
    DATASET_NAME = "NE"