babi.py 2.83 KB
Newer Older
Niklas Muennighoff's avatar
v1  
Niklas Muennighoff committed
1
"""
Niklas Muennighoff's avatar
Add CIT  
Niklas Muennighoff committed
2
Inspired by https://github.com/stanford-crfm/helm/blob/0eaaa62a2263ddb94e9850ee629423b010f57e4a/src/helm/benchmark/scenarios/babi_qa_scenario.py
Niklas Muennighoff's avatar
v1  
Niklas Muennighoff committed
3
4
5
6
7
8
9
10
"""
import numpy as np
from collections import defaultdict
from lm_eval.base import rf, Task
from lm_eval.metrics import mean


_CITATION = """
Niklas Muennighoff's avatar
Add CIT  
Niklas Muennighoff committed
11
12
13
14
15
16
@article{weston2015towards,
  title={Towards ai-complete question answering: A set of prerequisite toy tasks},
  author={Weston, Jason and Bordes, Antoine and Chopra, Sumit and Rush, Alexander M and Van Merri{\"e}nboer, Bart and Joulin, Armand and Mikolov, Tomas},
  journal={arXiv preprint arXiv:1502.05698},
  year={2015}
}
Niklas Muennighoff's avatar
v1  
Niklas Muennighoff committed
17
18
19
20
21
22
23
24
"""

class Babi(Task):
    VERSION = 0
    DATASET_PATH = "Muennighoff/babi"
    DATASET_NAME = None

    def has_training_docs(self):
Niklas Muennighoff's avatar
Niklas Muennighoff committed
25
        return True
Niklas Muennighoff's avatar
v1  
Niklas Muennighoff committed
26
27

    def has_validation_docs(self):
Niklas Muennighoff's avatar
Niklas Muennighoff committed
28
        return True
Niklas Muennighoff's avatar
v1  
Niklas Muennighoff committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42

    def has_test_docs(self):
        return True

    def training_docs(self):
        if self.has_training_docs():
            return self.dataset["train"]

    def validation_docs(self):
        if self.has_validation_docs():
            return self.dataset["valid"]

    def test_docs(self):
        if self.has_test_docs():
Niklas Muennighoff's avatar
Niklas Muennighoff committed
43
            return self.dataset["test"]
Niklas Muennighoff's avatar
v1  
Niklas Muennighoff committed
44
45
46
47
48
49
50

    def doc_to_text(self, doc):
        return (
            doc['passage'] + doc['question']
        )

    def should_decontaminate(self):
Niklas Muennighoff's avatar
Niklas Muennighoff committed
51
        return False # TODO Necessary?
Niklas Muennighoff's avatar
v1  
Niklas Muennighoff committed
52
53

    def doc_to_decontamination_query(self, doc):
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
54
        return f"Passage: {doc['passage']}\nQuestion: {doc['question']}\nAnswer:"
Niklas Muennighoff's avatar
v1  
Niklas Muennighoff committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

    def doc_to_target(self, doc):
        return " " + doc['answer']

    def construct_requests(self, doc, ctx):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
        return rf.greedy_until(ctx, ["\n"])

    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        gold = doc["answer"]
Niklas Muennighoff's avatar
Niklas Muennighoff committed
83
        pred = gold.strip() == results[0].strip()
Niklas Muennighoff's avatar
v1  
Niklas Muennighoff committed
84
85
86
87
88
89
90
91
92
93
94
        return {"em": pred}

    def aggregation(self):
        return {
            "em": mean,
        }

    def higher_is_better(self):
        return {
            "em": True,
        }