task.py 3.25 KB
Newer Older
1
import re
2
from copy import deepcopy
Simran Arora's avatar
Simran Arora committed
3
4
5
6
7
from typing import List

import numpy as np

from lm_eval.api.instance import Instance
8
from lm_eval.api.task import ConfigurableTask
Simran Arora's avatar
Simran Arora committed
9
10
11
12
13
14
15


class SQUADCompletion(ConfigurableTask):
    VERSION = 0
    DATASET_PATH = "hazyresearch/based-squad"
    DATASET_NAME = "default"

Lintang Sutawika's avatar
Lintang Sutawika committed
16
    def __init__(self, **kwargs):
17
        super().__init__(config={"metadata": {"version": self.VERSION}})
Simran Arora's avatar
Simran Arora committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return False

    def validation_docs(self):
        return self.dataset["validation"]

    def doc_to_text(self, doc):
        return doc["text"]

    def doc_to_target(self, doc):
        return doc["value"]

37
38
39
    def construct_requests(
        self, doc, ctx, chat_template=None, apply_chat_template=False, **kwargs
    ):
Simran Arora's avatar
Simran Arora committed
40
41
42
43
44
45
46
47
48
49
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
50
51
52
        arguments = deepcopy(self.config.generation_kwargs)
        arguments["until"] = arguments.get("until", ["\n"])
        arguments["max_gen_toks"] = arguments.get("max_gen_toks", 48)
Simran Arora's avatar
Simran Arora committed
53
54
55
56
        return [
            Instance(
                request_type="generate_until",
                doc=doc,
57
                arguments=(ctx, arguments),
Simran Arora's avatar
Simran Arora committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
                idx=0,
                **kwargs,
            )
        ]

    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # continuation, (logprob_unanswerable, _) = results
        continuation = results

76
        return {"contains": contains_score(continuation[0], [doc["value"]])}
Simran Arora's avatar
Simran Arora committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metrics
        """
        return {
            "contains": np.mean,  # Exact match (the normalized answer exactly match the gold answer)
        }

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        return {
            "contains": True,  # Exact match (the normalized answer exactly match the gold answer
        }


def contains_score(prediction: str, labels: List[str]):
    return max(
        int(bool(re.search(re.compile(re.escape(label), re.IGNORECASE), prediction)))
        for label in labels
    )