rwkv.py 3.92 KB
Newer Older
Baber's avatar
Baber committed
1
2
3
4
5
6
7
8
9
10
11
12
13
from typing import Optional, Union

import torch

import lm_eval.models.utils
from lm_eval.api.registry import register_model
from lm_eval.models.huggingface import HFLM


@register_model("rwkv")
class MambaLMWrapper(HFLM):
    def __init__(
        self,
Baber's avatar
nit  
Baber committed
14
        pretrained,
Baber's avatar
Baber committed
15
16
17
18
19
20
21
        # To use the HF compatible variant
        is_hf: bool = False,
        **kwargs,
    ) -> None:
        if "backend" in kwargs:
            assert kwargs["backend"] == "causal"
        self.is_hf = is_hf or (True if pretrained.endswith("hf") else False)
Baber's avatar
nit  
Baber committed
22
        assert kwargs["tokenizer"] is not None, "`tokenizer` is required"
Baber's avatar
Baber committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        self.tokenizer = kwargs["tokenizer"]
        self.pretrained = pretrained
        super().__init__(
            pretrained=pretrained,
            # set appropriate defaults for tokenizer, max length, etc
            backend=kwargs.pop("backend", "causal"),
            tokenizer=self.tokenizer,
            max_length=kwargs.pop("max_length", 4096),
            **kwargs,
        )

    def _get_config(
        self,
        pretrained: str,
        **kwargs,
    ) -> None:
        if self.is_hf:
            super()._get_config(pretrained, **kwargs)
        else:
            self._config = {}

    def _create_model(
        self,
        pretrained: str,
        dtype: Optional[Union[str, torch.dtype]] = "fp16",
        **kwargs,
    ) -> None:
        if self.is_hf:
            super()._create_model(pretrained, dtype=dtype, **kwargs)
        else:
            try:
                from rwkv.model import RWKV
            except ModuleNotFoundError as exception:
                raise type(exception)(
Baber's avatar
nit  
Baber committed
57
                    "install rwkv package (pip install rwkv)",
Baber's avatar
Baber committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
                )

            import os

            os.environ["RWKV_JIT_ON"] = "1"
            os.environ["RWKV_CUDA_ON"] = "1"
            os.environ["RWKV_V7_ON"] = "1"

            self._model = RWKV(model=self.pretrained, strategy=f"cuda {dtype}")

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        remove_arg = (
            ["attention_mask"] if self.is_hf else ["do_sample", "attention_mask"]
        )
        for key in remove_arg:
            if key in generation_kwargs:
                generation_kwargs.pop(key)

        all_outputs = []
        if not self.is_hf:
            CHUNK_SIZE = 4096
            prefill_ids, next_token = context[:-1], context[-1]
            state = None
            for i in range(0, len(prefill_ids), CHUNK_SIZE):
                prefill_token = prefill_ids[i : i + CHUNK_SIZE]
                _, state = self.model(prefill_token, state)

            gen_length = context.shape[1] - max_length
            for i in range(gen_length):
                logits, state = self.model([next_token], state)
                next_token = torch.argmax(logits, dim=-1)
                all_outputs.append(next_token)

            return torch.cat(all_outputs)
        else:
            stopping_criteria = lm_eval.models.utils.stop_sequences_criteria(
                self.tokenizer,
                stop,
                context.shape[1],
                context.shape[0],
            )

            generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
            do_sample = generation_kwargs.get("do_sample", None)

            # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
            if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
                generation_kwargs["do_sample"] = do_sample = False
            if do_sample is False and generation_kwargs.get("temperature") == 0.0:
                generation_kwargs.pop("temperature")

            return self.model.generate(
                input_ids=context,
                max_length=max_length,
                stopping_criteria=stopping_criteria,
                pad_token_id=self.tokenizer.pad_token_id,
                use_cache=True,
                **generation_kwargs,
            )