regression.py 5.92 KB
Newer Older
gakada's avatar
gakada committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
import json
import os
import subprocess
import time
from pathlib import Path

from lm_eval import tasks, utils


seq2seq_models = ["google/flan-t5-small"]
causal_models = ["gpt2", "facebook/opt-125m", "EleutherAI/gpt-neo-125m", "EleutherAI/pythia-160m"]
model_names = seq2seq_models + causal_models


completion_tasks = ["boolq", "lambada_openai", "winogrande"]
choice_tasks = ["hellaswag", "openbookqa", "piqa"]
perplexity_tasks = ["wikitext"]
generation_tasks = []
task_names = completion_tasks + choice_tasks + perplexity_tasks + generation_tasks


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--branches", default=[])
    parser.add_argument("--models", default=model_names)
    parser.add_argument("--tasks", default=task_names)
    parser.add_argument("--acc_norm", type=bool, default=False)
    parser.add_argument("--perplexity", default=None)
    # TODO: implement num_fewshot and limit per task, e.g. task1:5,task2:1:100,task3::1000
    parser.add_argument("--num_fewshot", type=int, default=0)
    parser.add_argument("--limit", type=float, default=None)
    # TODO: implement hf-auto to pick between causal and seq2seq models so we don't need this
    parser.add_argument("--model", default="hf-causal-experimental")
    # Use whatever is faster here
    parser.add_argument("--model_args", default="use_accelerate=True,load_in_8bit=True")
    parser.add_argument("--batch_size", default="auto")
    return parser.parse_args()


def eval_models(args, branch=None):
    if branch is not None:
        if os.system(f"git checkout {branch}") != 0:
            return {}, 0

    branch = branch or initial_branch

    start_time = time.time()

    results = {}

    for model in args.models:
        model_type = "hf-causal-experimental" if model in causal_models \
            else "hf-seq2seq" if model in seq2seq_models else args.model
        model_args = f"pretrained={model},{args.model_args}"
        # TODO: split_and_pad_windows in AutoSeq2SeqLM doesn"t exist, #527
        tasks = args.tasks if model in causal_models or model_type == "hf-causal-experimental" \
            else list(filter(lambda task: task not in perplexity_tasks, args.tasks))
        # TODO: OOM with auto for seq2seq models, also can OOM with llama
        batch_size = args.batch_size if model in causal_models or model_type == "hf-causal-experimental" \
            else 64 if args.batch_size == "auto" else args.batch_size
        output_path = f"data/regression/{int(start_time)}-{branch}-{Path(model).name}.json"

        command = f"python3 main.py --model {model_type} --model_args {model_args} --tasks {','.join(tasks)} " \
                  f"--num_fewshot {args.num_fewshot}{'' if args.limit is None else f' --limit {args.limit}'} " \
                  f"--batch_size {batch_size} --no_cache --output_path {output_path}"

        print(f"{'=' * 80}\nEvaluating {model} on {', '.join(tasks)} at {branch} with:\n\n{command}\n{'=' * 80}")

        ret = os.system(command)

        results[model] = json.load(open(output_path)) if ret == 0 else {"results": {}}

    end_time = time.time()

    return results, end_time - start_time


def extract_value(args, results, model, task, err=False):
    if model not in results:
        return 0
    results = results[model]["results"]
    if task not in results:
        return 0
    results = results[task]
    if args.acc_norm and "acc_norm" in results:
        return results["acc_norm"] if not err else results["acc_norm_stderr"]
    if "acc" in results:
        return results["acc"] if not err else results["acc_stderr"]
    if (args.perplexity or "word_perplexity") in results:
        return results[args.perplexity or "word_perplexity"] if not err else 0
    return 0


def format_value(args, results, model, task):
    val = 100 * extract_value(args, results, model, task)
    err = 100 * extract_value(args, results, model, task, err=True)
    return f"{val:.2f}{f' ± {err:.2f}' if err != 0 else ''}"


def format_diff(args, results1, results2, model, task):
    val1 = 100 * extract_value(args, results1, model, task)
    val2 = 100 * extract_value(args, results2, model, task)
    diff = val2 - val1
    return f"**+{diff:.2f}**" if diff > 0 else f"{diff:.2f}"


def main():
    args = parse_args()

    args.branches = args.branches.split(",") if type(args.branches) == str else args.branches
    args.models = args.models.split(",") if type(args.models) == str else args.models
    args.tasks = tasks.ALL_TASKS if args.tasks == "all_tasks" \
        else utils.pattern_match(args.tasks.split(",") if type(args.tasks) == str else args.tasks, tasks.ALL_TASKS)

    global initial_branch
    initial_branch = subprocess.check_output("git branch --show-current", shell=True).decode("ascii").strip()

    # TODO: implement proper timing for each task
    # TODO: reduce IO by sharing tasks between models?

    results, runtime = eval_models(args)
    print(results, runtime)

    runs = []
    for branch in args.branches:
        runs.append((branch, *eval_models(args, branch)))

    os.system(f"git checkout {initial_branch}")

    print("")
    print(f"|task|{'|'.join(map(lambda model: Path(model).name, args.models))}|")
    print(f"|--|{'--|' * len(args.models)}")
    for task in args.tasks:
        print(f"|{task} ({initial_branch})|{'|'.join(map(lambda model: format_value(args, results, model, task), args.models))}|")
        for branch, branch_results, branch_runtime in runs:
            print(f"|{task} ({branch})|{'|'.join(map(lambda model: format_value(args, branch_results, model, task), args.models))}|")
            print(f"|{task} (diff)|{'|'.join(map(lambda model: format_diff(args, results, branch_results, model, task), args.models))}|")

    print("")
    print("|branch|runtime|%|")
    print("|--|--|--|")
    print(f"|{initial_branch}|{runtime:.1f}s|100%|")
    for branch, _, branch_runtime in runs:
        print(f"|{branch}|{branch_runtime:.1f}s|{100 * branch_runtime / runtime:.2f}%|")


if __name__ == "__main__":
    main()