ibm_watsonx_ai.py 16.6 KB
Newer Older
1
import copy
2
import json
Lintang Sutawika's avatar
Lintang Sutawika committed
3
import logging
4
5
6
7
8
9
10
11
12
import os
from functools import lru_cache
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Type, cast

from tqdm import tqdm

from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
13
from lm_eval.models.api_models import JsonChatStr
Lintang Sutawika's avatar
Lintang Sutawika committed
14
15
16
17
from lm_eval.utils import simple_parse_args_string


eval_logger = logging.getLogger(__name__)
18
19
20
21
22
23
24


class LogLikelihoodResult(NamedTuple):
    log_likelihood: float
    is_greedy: bool


25
def _verify_credentials(creds: Any) -> None:
26
    """
27
    Verifies that all required keys are present in the credentials dictionary.
28
    Args:
29
30
        creds (Any): A dictionary containing the credentials.
    Raises:
31
32
        ValueError: If any of the necessary credentials are missing, with guidance
                    on which environment variables need to be set.
33
    """
34
    env_var_map = {
35
        "apikey": "WATSONX_API_KEY",
36
        "token": "WATSONX_TOKEN",
37
38
39
40
        "url": "WATSONX_URL",
        "project_id": "WATSONX_PROJECT_ID",
    }

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    auth_req_keys = ["apikey", "token"]  # one of these is required
    other_req_keys = ["url", "project_id"]  # both of these are required

    missing_auth = all(not creds.get(key) for key in auth_req_keys)  # flag any missing
    missing_keys = [
        f"{key} ({env_var_map[key]})" for key in other_req_keys if not creds.get(key)
    ]  # list all missing

    if missing_keys or missing_auth:
        error_msg = f"Missing required credentials: {', '.join(missing_keys)}"
        if missing_auth:
            error_msg += ", and " if missing_keys else ""
            error_msg += f"either {' or '.join([f'{key} ({env_var_map[key]})' for key in auth_req_keys])}"

        error_msg += ". Please set the environment variables indicated in parenthesis."
        raise ValueError(error_msg)
57
58
59
60
61
62


@lru_cache(maxsize=None)
def get_watsonx_credentials() -> Dict[str, str]:
    """
    Retrieves Watsonx API credentials from environmental variables.
63
    Returns:
64
        Dict[str, str]: A dictionary containing the credentials necessary for authentication, including
65
                        keys such as `apikey` or `token`, `url`, and `project_id`.
66
    Raises:
67
        AssertionError: If the credentials format is invalid or any of the necessary credentials are missing.
68
    """
69
70
71
72
73
74
75
76
77
78
    try:
        from dotenv import load_dotenv
    except ImportError:
        raise ImportError(
            "Could not import dotenv: Please install lm_eval[ibm_watsonx_ai] package."
        )

    # This function attempts to load a file named .env starting from the CWD and working backwards
    # towards root. KV pairs are parsed and stored as env vars iff not already set
    load_dotenv()
79
80
81

    credentials = {
        "apikey": os.getenv("WATSONX_API_KEY", None),
82
        "token": os.getenv("WATSONX_TOKEN", None),
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        "url": os.getenv("WATSONX_URL", None),
        "project_id": os.getenv("WATSONX_PROJECT_ID", None),
    }

    _verify_credentials(credentials)
    return credentials


@register_model("watsonx_llm")
class WatsonxLLM(LM):
    """
    Implementation of LM model interface for evaluating Watsonx model with the lm_eval framework.
    See https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/model_guide.md for reference.
    """

    @classmethod
    def create_from_arg_string(
        cls: Type["WatsonxLLM"],
        arg_string: str,
102
        additional_config: Optional[Dict] = None,
103
104
105
106
107
108
109
110
111
112
113
114
    ) -> "WatsonxLLM":
        """
        Allow the user to specify model parameters (TextGenerationParameters) in CLI arguments.
        """
        try:
            from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
        except ImportError:
            raise ImportError(
                "Could not import ibm_watsonx_ai: Please install lm_eval[ibm_watsonx_ai] package."
            )

        args = simple_parse_args_string(arg_string)
115
116
        args.update(additional_config)

117
118
119
120
121
122
123
124
125
126
        model_id = args.pop("model_id", None)
        if model_id is None:
            raise ValueError("'model_id' is required, please pass it in 'model_args'")

        if not args.get("do_sample", None):
            args["temperature"] = None
            args["top_p"] = None
            args["top_k"] = None
            args["seed"] = None

127
        generate_params = {
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
            GenParams.DECODING_METHOD: (
                "greedy" if not args.get("do_sample", None) else "sample"
            ),
            GenParams.LENGTH_PENALTY: args.get("length_penalty", None),
            GenParams.TEMPERATURE: args.get("temperature", None),
            GenParams.TOP_P: args.get("top_p", None),
            GenParams.TOP_K: args.get("top_k", None),
            GenParams.RANDOM_SEED: args.get("seed", None),
            GenParams.REPETITION_PENALTY: args.get("repetition_penalty", None),
            GenParams.MIN_NEW_TOKENS: args.get("min_new_tokens", None),
            GenParams.MAX_NEW_TOKENS: args.get("max_new_tokens", 256),
            GenParams.STOP_SEQUENCES: args.get("stop_sequences", None),
            GenParams.TIME_LIMIT: args.get("time_limit", None),
            GenParams.TRUNCATE_INPUT_TOKENS: args.get("truncate_input_tokens", None),
            GenParams.RETURN_OPTIONS: {
                "generated_tokens": True,
                "input_tokens": True,
                "token_logprobs": True,
                "token_ranks": True,
            },
        }

150
        generate_params = {k: v for k, v in generate_params.items() if v is not None}
151
152

        return cls(
153
            watsonx_credentials=get_watsonx_credentials(),
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
            model_id=model_id,
            generate_params=generate_params,
        )

    def __init__(
        self,
        watsonx_credentials: Dict,
        model_id,
        generate_params: Optional[Dict[Any, Any]] = None,
    ) -> None:
        try:
            from ibm_watsonx_ai import APIClient
            from ibm_watsonx_ai.foundation_models import ModelInference
        except ImportError:
            raise ImportError(
                "Could not import ibm_watsonx_ai: Please install lm_eval[ibm_watsonx_ai] package."
            )
        super().__init__()
        client = APIClient(watsonx_credentials)
        project_id = watsonx_credentials.get("project_id", None)
        deployment_id = watsonx_credentials.get("deployment_id", None)
        client.set.default_project(project_id)
176
        self.generate_params = generate_params
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        self.model = ModelInference(
            model_id=model_id,
            deployment_id=deployment_id,
            api_client=client,
            project_id=project_id,
        )
        self._model_id = model_id

    @staticmethod
    def _has_stop_token(response_tokens: List[str], context_tokens: List[str]) -> bool:
        """
        Determines whether a stop token has been generated in the `response_tokens` compared to the `context_tokens`.
        If the tokens do not match as expected, the function raises a RuntimeError, indicating a possible
        misalignment between the tokens generated by the tokenizer and the model.
        Args:
            response_tokens (List[str]): The List of tokens generated as a response by the model.
            context_tokens (List[str]): The List of tokens representing the input context.
        Returns:
            bool: True if the `response_tokens` likely contain a stop token that terminates the sequence,
                  otherwise raises an exception.
        Raises:
            RuntimeError: If there is an unexpected mismatch between the `response_tokens` and the `context_tokens`.
        """
        context_length = len(context_tokens)
        if response_tokens[: context_length - 1] == context_tokens[:-1]:
            return (
                response_tokens[-1] != context_tokens[-1]
            )  # only last token differs, probably stop sequence (</s>)
        raise RuntimeError(
            f"There is an unexpected difference between tokenizer and model tokens:\n"
            f"context_tokens={context_tokens}\n"
            f"response_tokens={response_tokens[:context_length]}"
        )

    def _check_model_logprobs_support(self):
        """
        Verifies if the model supports returning log probabilities for input tokens.
        This function sends a prompt to the model and checks whether the model's response
        includes log probabilities for the input tokens. If log probabilities are not present,
        it raises a `RuntimeError`, indicating that the model is not supported.
        Raises:
            RuntimeError: If the model does not return log probabilities for input tokens.
        """
        tokens = self.model.generate_text(
            prompt=["The best ice cream flavor is:"],
            params=self.generate_params,
            raw_response=True,
        )[0]["results"][0]
        if all(token.get("logprob", None) is None for token in tokens["input_tokens"]):
            raise RuntimeError(
                f"Model {self._model_id} is not supported: does not return logprobs for input tokens"
            )

    def _get_log_likelihood(
        self,
        input_tokens: List[Dict[str, float]],
        context_tokens: List[Dict[str, float]],
    ) -> LogLikelihoodResult:
        """
        Calculates the log likelihood of the generated tokens compared to the context tokens.
        Args:
238
            input_tokens (List[Dict[str, float]]): A List of token dictionaries, each containing
239
                token information like `text` and `logprob`.
240
            context_tokens (List[Dict[str, float]]): A List of token dictionaries representing
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
                the input context.
        Returns:
            LogLikelihoodResult: An object containing the calculated log likelihood and a boolean
            flag indicating if the tokens were generated greedily.
        """

        response_tokens = [token["text"] for token in input_tokens]
        context_length = len(context_tokens)

        if self._has_stop_token(response_tokens, context_tokens):
            context_length -= 1

        return LogLikelihoodResult(
            log_likelihood=sum(
                token.get("logprob", 0) for token in input_tokens[context_length:]
            ),
            is_greedy=all(
                token["rank"] == 1 for token in input_tokens[context_length:]
            ),
        )

    def generate_until(self, requests: List[Instance]) -> List[str]:
        """
        Generates text responses for a List of requests, with progress tracking and caching.
        Args:
            requests (List[Instance]): A List of instances, each containing a text input to be processed.
        Returns:
            List[str]: A List of generated responses.
        """
270
        requests = [request.args for request in requests]
271
272
        results = []

273
274
275
        for request in tqdm(
            requests,
            desc="Running generate_until function ...",
276
        ):
277
            context, continuation = request
278
            try:
279
280
281
282
283
284
                if isinstance(context, JsonChatStr):
                    context = json.loads(context.prompt)
                    response = self.model.chat(context, self.generate_params)
                    response = response["choices"][0]["message"]["content"]
                else:
                    response = self.model.generate_text(context, self.generate_params)
285
            except Exception as exp:
286
287
                eval_logger.error("Error while generating text.")
                raise exp
288

289
290
291
292
            results.append(response)
            self.cache_hook.add_partial(
                "generate_until", (context, continuation), response
            )
293
294
295
296
297
298
299
300
301
302
303

        return results

    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
        """
        Args:
            requests: Each request contains Instance.args : Tuple[str, str] containing:
                1. an input string to the LM and
                2. a target string on which the loglikelihood of the LM producing this target,
                   conditioned on the input, will be returned.
        Returns:
304
            Tuple (loglikelihood, is_greedy) for each request according to the input order:
305
306
307
308
309
310
311
312
313
314
                loglikelihood: probability of generating the target string conditioned on the input
                is_greedy: True if and only if the target string would be generated by greedy sampling from the LM
        """
        try:
            from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
        except ImportError:
            raise ImportError(
                "Could not import ibm_watsonx_ai: Please install lm_eval[ibm_watsonx_ai] package."
            )
        self._check_model_logprobs_support()
315
316
        generate_params = copy.copy(self.generate_params)
        generate_params[GenParams.MAX_NEW_TOKENS] = 1
317
318
319
320

        requests = [request.args for request in requests]
        results: List[LogLikelihoodResult] = []

321
322
323
324
        # Note: We're not using batching due to (current) indeterminism of loglikelihood values when sending batch of requests
        for request in tqdm(
            requests,
            desc="Running loglikelihood function ...",
325
        ):
326
            context, continuation = request
327
            try:
328
329
330
                tokenized_context = self.model.tokenize(
                    prompt=context, return_tokens=True
                )["result"]["tokens"]
331
            except Exception as exp:
332
333
                eval_logger.error("Error while model tokenize.")
                raise exp
334

335
            input_prompt = context + continuation
336
337

            try:
338
339
                response = self.model.generate_text(
                    prompt=input_prompt, params=generate_params, raw_response=True
340
341
                )
            except Exception as exp:
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
                eval_logger.error("Error while model generate text.")
                raise exp

            log_likelihood_response = self._get_log_likelihood(
                response["results"][0]["input_tokens"], tokenized_context
            )
            results.append(log_likelihood_response)
            self.cache_hook.add_partial(
                "loglikelihood",
                (context, continuation),
                (
                    log_likelihood_response.log_likelihood,
                    log_likelihood_response.is_greedy,
                ),
            )
357
358
359
360
361
362
363

        return cast(List[Tuple[float, bool]], results)

    def loglikelihood_rolling(self, requests) -> List[Tuple[float, bool]]:
        """
        Used to evaluate perplexity on a data distribution.
        Args:
364
            requests: Each request contains Instance.args : Tuple[str] containing an input string to the model whose
365
366
                entire loglikelihood, conditioned on purely the EOT token, will be calculated.
        Returns:
367
            Tuple (loglikelihood,) for each request according to the input order:
368
369
370
371
372
373
374
375
376
                loglikelihood: solely the probability of producing each piece of text given no starting input.
        """
        try:
            from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
        except ImportError:
            raise ImportError(
                "Could not import ibm_watsonx_ai: Please install lm_eval[ibm_watsonx_ai] package."
            )
        self._check_model_logprobs_support()
377
378
        generate_params = copy.deepcopy(self.generate_params)
        generate_params[GenParams.MAX_NEW_TOKENS] = 1
379

380
        requests = [request.args for request in requests]
381
382
        results: List[LogLikelihoodResult] = []

383
384
385
386
        # Note: We're not using batching due to (current) indeterminism of loglikelihood values when sending batch of requests
        for request in tqdm(
            requests,
            desc="Running loglikelihood_rolling function ...",
387
        ):
388
            context, continuation = request
389
            try:
390
391
                response = self.model.generate_text(
                    prompt=context, params=generate_params, raw_response=True
392
393
                )
            except Exception as exp:
394
395
396
397
398
399
400
401
402
403
404
405
                eval_logger.error("Error while model generate text.")
                raise exp

            log_likelihood_response = self._get_log_likelihood(
                response["results"][0]["input_tokens"], []
            )
            results.append(log_likelihood_response)
            self.cache_hook.add_partial(
                "loglikelihood_rolling",
                (context, continuation),
                log_likelihood_response.log_likelihood,
            )
406
407

        return cast(List[Tuple[float, bool]], results)
408
409
410
411
412
413
414
415
416
417

    @property
    def tokenizer_name(self) -> str:
        return ""

    def apply_chat_template(
        self, chat_history: List[Dict[str, str]]
    ) -> List[Dict[str, str]]:
        # A hack similar from api_model to allow encoding for cache
        return JsonChatStr(json.dumps(chat_history))