test_models.py 10.9 KB
Newer Older
Jonathan Tow's avatar
Jonathan Tow committed
1
2
3
4
import hashlib
import json
import os
import pickle
Leo Gao's avatar
Leo Gao committed
5
import pytest
6
import unittest.mock as mock
Jonathan Tow's avatar
Jonathan Tow committed
7

Leo Gao's avatar
Leo Gao committed
8
import lm_eval.models as models
9

lintangsutawika's avatar
update  
lintangsutawika committed
10
11
12
13
from openai import OpenAI

client = OpenAI()

Leo Gao's avatar
Leo Gao committed
14

Jonathan Tow's avatar
Jonathan Tow committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
LOGLIKELIHOOD_TEST_CASES = [
    ("The quick brown fox jumps over the lazy", " dog"),
    ("The quick brown fox jumps over the lazy", " cat"),
    ("The quick brown fox jumps over the lazy", ", lazy dog"),
    ("The quick brown fox jumps over the lazy", ", lazy fox"),
    (
        "The quick brown fox jumps over the lazy",
        ", lazy fox and they both fall to the ground",
    ),
    (
        """A mult""",
        """ilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN)""",
    ),
    (
        """The term MLP is used ambiguously, sometimes loosely to any feedforward ANN, sometimes strictly to refer to networks composed of multiple layers of perceptrons""",
        """ (with threshold activation); see § Terminology""",
    ),
    (
        """Multilayer perceptrons are sometimes coll""",
        """oquially referred to as "vanilla" neural networks, especially when they have a single hidden layer.[1]""",
    ),
    (
        """An MLP consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear""",
        """ activation function.""",
    ),
    (
        """MLP utilizes a supervised""",
        """ learning technique called backpropagation for training.[2][3] Its multiple layers and non-linear activation distinguish MLP from a linear perceptron. It can distinguish data that is not linearly separable.[4]""",
    ),
    (
        """Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic""",
        """ in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. """,
    ),
    (
        """Specifically, we train GPT-3, an autoregressive language model with 175""",
        """ billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.""",
    ),
    (
        """A mult""",
        """ilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN)""",
    ),
    ("""Hello""", """ World"""),
]


# Test HuggingFace Models (GPT-2)


Leo Gao's avatar
Leo Gao committed
63
def test_gpt2():
Fabrizio Milo's avatar
Fabrizio Milo committed
64
65
66
67
68
69
70
71
    gpt2 = models.get_model("gpt2").create_from_arg_string("device=cpu")
    (
        (ll_dog, ig_dog),
        (ll_cat, ig_cat),
        (_, ll_max_0),
        (_, ll_max_1),
        (_, ll_max_2),
        *vals,
Jonathan Tow's avatar
Jonathan Tow committed
72
    ) = gpt2.loglikelihood(LOGLIKELIHOOD_TEST_CASES)
Leo Gao's avatar
Leo Gao committed
73
74
75
76

    assert ll_dog > ll_cat
    assert not ig_cat

77
78
79
80
    assert not ll_max_0
    assert ll_max_1
    assert ll_max_2

Leo Gao's avatar
Leo Gao committed
81
    # test empty context
Fabrizio Milo's avatar
Fabrizio Milo committed
82
    gpt2.loglikelihood([("", "test")])
Leo Gao's avatar
Leo Gao committed
83

84
    (gen,) = gpt2.generate_until(
Fabrizio Milo's avatar
Fabrizio Milo committed
85
86
        [("The quick brown fox jumps over the lazy", [".", "\n"])]
    )
Leo Gao's avatar
Leo Gao committed
87

Fabrizio Milo's avatar
Fabrizio Milo committed
88
    assert gen == ", lazy fox and they both fall to the ground"
Leo Gao's avatar
Leo Gao committed
89

90
    targets = [
Fabrizio Milo's avatar
Fabrizio Milo committed
91
92
93
94
95
96
97
98
99
        -61.60536193847656,
        -56.57843780517578,
        -62.131004333496094,
        -9.799489974975586,
        -153.96334838867188,
        -341.222900390625,
        -731.1475830078125,
        -61.60536193847656,
        -8.682319641113281,
100
    ]
Leo Gao's avatar
Leo Gao committed
101
102

    for (pred, _), tgt in zip(vals, targets):
103
        assert pred == pytest.approx(tgt, rel=1e-3)
Leo Gao's avatar
Leo Gao committed
104

Jason Phang's avatar
Jason Phang committed
105
106

def test_gpt2_perplexity():
Fabrizio Milo's avatar
Fabrizio Milo committed
107
    gpt2 = models.get_model("gpt2").create_from_arg_string("device=cpu")
Jason Phang's avatar
Jason Phang committed
108
    test_string = "We study empirical scaling laws for language model performance on the cross-entropy loss."
109
    perplexity = gpt2.loglikelihood_rolling([(test_string,)])[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    tgt = sum(
        [
            -4.9599953,
            -8.069298,
            -8.308624,
            -10.178513,
            -8.906924,
            -1.9318912,
            -7.745445,
            -7.146077,
            -5.2072,
            -3.5882986,
            -1.9957212,
            -8.044922,
            -0.20841774,
            -5.1096807,
            -0.099879116,
            -8.888423,
            -4.6180487,
        ]
    )
131
    assert perplexity == pytest.approx(tgt, rel=1e-3)
Jason Phang's avatar
Jason Phang committed
132

Fabrizio Milo's avatar
Fabrizio Milo committed
133
134
135
    with mock.patch.object(
        models.gpt2.HFLM, "max_length", new_callable=mock.PropertyMock
    ) as mock_max_length:
136
        mock_max_length.return_value = 5
Fabrizio Milo's avatar
Fabrizio Milo committed
137
        gpt2 = models.get_model("gpt2").create_from_arg_string("device=cpu")
138
        perplexity = gpt2.loglikelihood_rolling([(test_string,)])[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    tgt = sum(
        [
            -4.96001,
            -8.069275,
            -8.308612,
            -10.178482,
            -8.90691,
            -4.037338,
            -8.09261,
            -11.662385,
            -10.206891,
            -4.425003,
            -2.2563353,
            -7.909143,
            -1.9304147,
            -7.3610134,
            -2.3120654,
            -7.3229,
            -2.1643813,
        ]
    )
160
    assert perplexity == pytest.approx(tgt, rel=1e-3)
Jonathan Tow's avatar
Jonathan Tow committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177


# Test OpenAI Models (GPT-3)


def openai_mock_completion(**kwargs):
    # Mock completion function
    # Loads from a cached+pickled response if it exists, otherwise it will actually try to ping
    os.makedirs("tests/testdata", exist_ok=True)
    hash = hashlib.sha256(
        json.dumps(kwargs, sort_keys=True).encode("utf-8")
    ).hexdigest()
    fname = f"tests/testdata/gpt3_test_{hash}.pkl"

    if os.path.exists(fname):
        with open(fname, "rb") as fh:
            return pickle.load(fh)
lintangsutawika's avatar
lintangsutawika committed
178
    ret = client.completions.create(**kwargs)
Jonathan Tow's avatar
Jonathan Tow committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    ret.api_key = ""
    with open(fname, "wb") as fh:
        pickle.dump(ret, fh)
    return ret


@mock.patch("lm_eval.models.gpt3.oa_completion", new=openai_mock_completion)
def test_gpt3():
    if "OPENAI_API_SECRET_KEY" not in os.environ:
        os.environ["OPENAI_API_SECRET_KEY"] = ""
    gpt3 = models.get_model("gpt3").create_from_arg_string("engine=ada")
    (
        (ll_dog, ig_dog),
        (ll_cat, ig_cat),
        (_, ll_max_0),
        (_, ll_max_1),
        (_, ll_max_2),
        *vals,
    ) = gpt3.loglikelihood(LOGLIKELIHOOD_TEST_CASES)

    assert ll_dog > ll_cat
    assert not ig_cat

    assert ig_dog
    assert not ll_max_0
    assert not ll_max_1
    assert not ll_max_2

    # test empty context
    gpt3.loglikelihood([("", "test")])

210
    (gen,) = gpt3.generate_until(
Jonathan Tow's avatar
Jonathan Tow committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        [("The quick brown fox jumps over the lazy", [".", "\n"])]
    )

    assert gen == " dog"

    print([x[0] for x in vals])

    targets = [
        -34.848301606999996,
        -47.148329679999996,
        -45.44380149599999,
        -5.285246016,
        -133.97821690686004,
        -321.2616693239001,
        -658.0299524401041,
        -34.848301606999996,
        -7.525115,
    ]

    for (pred, _), tgt in zip(vals, targets):
        assert pred == pytest.approx(tgt, rel=1e-3)


@mock.patch("lm_eval.models.gpt3.oa_completion", new=openai_mock_completion)
def test_gpt3_perplexity():
    if "OPENAI_API_SECRET_KEY" not in os.environ:
        os.environ["OPENAI_API_SECRET_KEY"] = ""
    gpt3 = models.get_model("gpt3").create_from_arg_string("engine=ada")
    test_string = "We study empirical scaling laws for language model performance on the cross-entropy loss."
    perplexity = gpt3.loglikelihood_rolling([(test_string,)])[0]
    tgt = -84.38819608
    assert perplexity == pytest.approx(tgt, rel=1e-3)

    # Hack: modify gpt3 to have shorter context length to induce rolling windows
    with mock.patch.object(
        models.gpt3.GPT3LM, "max_length", new_callable=mock.PropertyMock
    ) as mock_max_length:
        mock_max_length.return_value = 5
        gpt3 = models.get_model("gpt3").create_from_arg_string("engine=ada")
        perplexity = gpt3.loglikelihood_rolling([(test_string,)])[0]
    tgt = -101.81967209999999
    assert perplexity == pytest.approx(tgt, rel=1e-3)


# Test TextSynth Models (GPT-J)


def textsynth_mock_completion(**kwargs):
    # Mock completion function
    # Loads from a cached+pickled response if it exists, otherwise it will actually try to ping
    import requests

    os.makedirs("tests/testdata", exist_ok=True)
jon-tow's avatar
jon-tow committed
264
    hash_kwargs = {k: v for k, v in kwargs.items() if k != "headers"}
Jonathan Tow's avatar
Jonathan Tow committed
265
    hash = hashlib.sha256(
jon-tow's avatar
jon-tow committed
266
        json.dumps(hash_kwargs, sort_keys=True).encode("utf-8")
Jonathan Tow's avatar
Jonathan Tow committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    ).hexdigest()
    fname = f"tests/testdata/textsynth_test_{hash}.pkl"

    if os.path.exists(fname):
        with open(fname, "rb") as fh:
            return pickle.load(fh)
    ret = requests.post(**kwargs)
    with open(fname, "wb") as fh:
        pickle.dump(ret, fh)
    return ret


@mock.patch(
    "lm_eval.models.textsynth.textsynth_completion", new=textsynth_mock_completion
)
def test_textsynth():
    if "TEXTSYNTH_API_SECRET_KEY" not in os.environ:
        os.environ["TEXTSYNTH_API_SECRET_KEY"] = ""
    textsynth = models.get_model("textsynth").create_from_arg_string("engine=gptj_6B")
    (
        (ll_dog, ig_dog),
        (ll_cat, ig_cat),
        (_, ll_max_0),
        (_, ll_max_1),
        (_, ll_max_2),
        *vals,
    ) = textsynth.loglikelihood(LOGLIKELIHOOD_TEST_CASES)

    assert ll_dog > ll_cat
    assert not ig_cat

    assert ig_dog
    assert not ll_max_0
    assert not ll_max_1
    assert not ll_max_2

    # test empty context
    textsynth.loglikelihood([("", "test")])

306
    (gen,) = textsynth.generate_until(
Jonathan Tow's avatar
Jonathan Tow committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        [("The quick brown fox jumps over the lazy", [".", "\n"])]
    )

    assert gen == " dog"

    print([x[0] for x in vals])

    targets = [
        -17.90513712817,
        -41.83518912287,
        -33.82445643841,
        -2.377361565302,
        -99.53018069754,
        -243.5642283598,
        -528.6862613790,
        -17.90513712817,
        -5.041000672142,
    ]

    for (pred, _), tgt in zip(vals, targets):
        assert pred == pytest.approx(tgt, rel=1e-3)