test_vllm.py 1.76 KB
Newer Older
baberabb's avatar
baberabb committed
1
2
3
4
5
6
7
8
import pytest
from typing import List
from lm_eval.api.instance import Instance
import lm_eval.tasks as tasks
import sys
import torch


baberabb's avatar
baberabb committed
9
@pytest.mark.skip(reason="requires CUDA")
baberabb's avatar
baberabb committed
10
class TEST_VLLM:
baberabb's avatar
baberabb committed
11
    vllm = pytest.importorskip("vllm")
baberabb's avatar
baberabb committed
12
13
14
15
16
17
    try:
        from lm_eval.models.vllm_causallms import VLLM

        LM = VLLM(pretrained="EleutherAI/pythia-70m")
    except ModuleNotFoundError:
        pass
baberabb's avatar
baberabb committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    torch.use_deterministic_algorithms(True)
    tasks.initialize_tasks()
    multiple_choice_task = tasks.TASK_REGISTRY.get("arc_easy")()  # type: ignore
    multiple_choice_task.build_all_requests(limit=10, rank=0, world_size=1)
    MULTIPLE_CH: List[Instance] = multiple_choice_task.instances
    generate_until_task = tasks.TASK_REGISTRY.get("gsm8k")()  # type: ignore
    generate_until_task.build_all_requests(limit=10, rank=0, world_size=1)
    generate_until_task._config.generation_kwargs["max_gen_toks"] = 10
    generate_until: List[Instance] = generate_until_task.instances
    rolling_task = tasks.TASK_REGISTRY.get("wikitext")()  # type: ignore
    rolling_task.build_all_requests(limit=10, rank=0, world_size=1)
    ROLLING: List[Instance] = rolling_task.instances

    # TODO: make proper tests
    def test_logliklihood(self) -> None:
        res = self.LM.loglikelihood(self.MULTIPLE_CH)
        assert len(res) == len(self.MULTIPLE_CH)
        for x in res:
            assert isinstance(x[0], float)

    def test_generate_until(self) -> None:
        res = self.LM.generate_until(self.generate_until)
        assert len(res) == len(self.generate_until)
        for x in res:
            assert isinstance(x, str)

    def test_logliklihood_rolling(self) -> None:
        res = self.LM.loglikelihood_rolling(self.ROLLING)
        for x in res:
            assert isinstance(x, float)