regression.py 6.36 KB
Newer Older
gakada's avatar
gakada committed
1
2
3
4
5
6
7
import argparse
import json
import os
import subprocess
import time
from pathlib import Path

8
9
from lm_eval import evaluator, utils
from lm_eval.api.registry import ALL_TASKS
gakada's avatar
gakada committed
10
11
12


seq2seq_models = ["google/flan-t5-small"]
lintangsutawika's avatar
lintangsutawika committed
13
14
15
16
17
18
causal_models = [
    "gpt2",
    "facebook/opt-125m",
    "EleutherAI/gpt-neo-125m",
    "EleutherAI/pythia-160m",
]
gakada's avatar
gakada committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
model_names = seq2seq_models + causal_models


completion_tasks = ["boolq", "lambada_openai", "winogrande"]
choice_tasks = ["hellaswag", "openbookqa", "piqa"]
perplexity_tasks = ["wikitext"]
generation_tasks = []
task_names = completion_tasks + choice_tasks + perplexity_tasks + generation_tasks


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--branches", default=[])
    parser.add_argument("--models", default=model_names)
    parser.add_argument("--tasks", default=task_names)
    parser.add_argument("--acc_norm", type=bool, default=False)
    parser.add_argument("--perplexity", default=None)
    # TODO: implement num_fewshot and limit per task, e.g. task1:5,task2:1:100,task3::1000
    parser.add_argument("--num_fewshot", type=int, default=0)
    parser.add_argument("--limit", type=float, default=None)
    # TODO: implement hf-auto to pick between causal and seq2seq models so we don't need this
40
    parser.add_argument("--model", default="hf-causal")
gakada's avatar
gakada committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    # Use whatever is faster here
    parser.add_argument("--model_args", default="use_accelerate=True,load_in_8bit=True")
    parser.add_argument("--batch_size", default="auto")
    return parser.parse_args()


def eval_models(args, branch=None):
    if branch is not None:
        if os.system(f"git checkout {branch}") != 0:
            return {}, 0

    branch = branch or initial_branch

    start_time = time.time()

    results = {}

    for model in args.models:
lintangsutawika's avatar
lintangsutawika committed
59
60
61
62
63
64
65
        model_type = (
            "hf-causal"
            if model in causal_models
            else "hf-seq2seq"
            if model in seq2seq_models
            else args.model
        )
gakada's avatar
gakada committed
66
67
        model_args = f"pretrained={model},{args.model_args}"
        # TODO: split_and_pad_windows in AutoSeq2SeqLM doesn"t exist, #527
lintangsutawika's avatar
lintangsutawika committed
68
69
70
        tasks = (
            args.tasks
            if model in causal_models or model_type == "hf-causal"
gakada's avatar
gakada committed
71
            else list(filter(lambda task: task not in perplexity_tasks, args.tasks))
lintangsutawika's avatar
lintangsutawika committed
72
        )
gakada's avatar
gakada committed
73
        # TODO: OOM with auto for seq2seq models, also can OOM with llama
lintangsutawika's avatar
lintangsutawika committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        batch_size = (
            args.batch_size
            if model in causal_models or model_type == "hf-causal"
            else 64
            if args.batch_size == "auto"
            else args.batch_size
        )
        output_path = (
            f"data/regression/{int(start_time)}-{branch}-{Path(model).name}.json"
        )

        command = (
            f"python3 main.py --model {model_type} --model_args {model_args} --tasks {','.join(tasks)} "
            f"--num_fewshot {args.num_fewshot}{'' if args.limit is None else f' --limit {args.limit}'} "
            f"--batch_size {batch_size} --no_cache --output_path {output_path}"
        )

        print(
            f"{'=' * 80}\nEvaluating {model} on {', '.join(tasks)} at {branch} with:\n\n{command}\n{'=' * 80}"
        )
gakada's avatar
gakada committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

        ret = os.system(command)

        results[model] = json.load(open(output_path)) if ret == 0 else {"results": {}}

    end_time = time.time()

    return results, end_time - start_time


def extract_value(args, results, model, task, err=False):
    if model not in results:
        return 0
    results = results[model]["results"]
    if task not in results:
        return 0
    results = results[task]
111
112
113
114
115
    if args.acc_norm and "acc_norm,none" in results:
        return results["acc_norm,none"] if not err else results["acc_norm_stderr,none"]
    if "acc,none" in results:
        return results["acc,none"] if not err else results["acc_stderr,none"]
    if (args.perplexity or "word_perplexity") + ",none" in results:
lintangsutawika's avatar
lintangsutawika committed
116
117
118
        return (
            results[(args.perplexity or "word_perplexity") + ",none"] if not err else 0
        )
gakada's avatar
gakada committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    return 0


def format_value(args, results, model, task):
    val = 100 * extract_value(args, results, model, task)
    err = 100 * extract_value(args, results, model, task, err=True)
    return f"{val:.2f}{f' ± {err:.2f}' if err != 0 else ''}"


def format_diff(args, results1, results2, model, task):
    val1 = 100 * extract_value(args, results1, model, task)
    val2 = 100 * extract_value(args, results2, model, task)
    diff = val2 - val1
    return f"**+{diff:.2f}**" if diff > 0 else f"{diff:.2f}"


def main():
    args = parse_args()

lintangsutawika's avatar
lintangsutawika committed
138
139
140
    args.branches = (
        args.branches.split(",") if type(args.branches) == str else args.branches
    )
gakada's avatar
gakada committed
141
    args.models = args.models.split(",") if type(args.models) == str else args.models
lintangsutawika's avatar
lintangsutawika committed
142
143
144
145
146
147
148
    args.tasks = (
        ALL_TASKS
        if args.tasks == "all_tasks"
        else utils.pattern_match(args.tasks.split(","), ALL_TASKS)
        if type(args.tasks) == str
        else args.tasks
    )
gakada's avatar
gakada committed
149
150

    global initial_branch
lintangsutawika's avatar
lintangsutawika committed
151
152
153
154
155
    initial_branch = (
        subprocess.check_output("git branch --show-current", shell=True)
        .decode("ascii")
        .strip()
    )
gakada's avatar
gakada committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    # TODO: implement proper timing for each task
    # TODO: reduce IO by sharing tasks between models?

    results, runtime = eval_models(args)
    print(results, runtime)

    runs = []
    for branch in args.branches:
        runs.append((branch, *eval_models(args, branch)))

    os.system(f"git checkout {initial_branch}")

    print("")
    print(f"|task|{'|'.join(map(lambda model: Path(model).name, args.models))}|")
    print(f"|--|{'--|' * len(args.models)}")
    for task in args.tasks:
lintangsutawika's avatar
lintangsutawika committed
173
174
175
        print(
            f"|{task} ({initial_branch})|{'|'.join(map(lambda model: format_value(args, results, model, task), args.models))}|"
        )
gakada's avatar
gakada committed
176
        for branch, branch_results, branch_runtime in runs:
lintangsutawika's avatar
lintangsutawika committed
177
178
179
180
181
182
            print(
                f"|{task} ({branch})|{'|'.join(map(lambda model: format_value(args, branch_results, model, task), args.models))}|"
            )
            print(
                f"|{task} (diff)|{'|'.join(map(lambda model: format_diff(args, results, branch_results, model, task), args.models))}|"
            )
gakada's avatar
gakada committed
183
184
185
186
187
188
189
190
191
192
193

    print("")
    print("|branch|runtime|%|")
    print("|--|--|--|")
    print(f"|{initial_branch}|{runtime:.1f}s|100%|")
    for branch, _, branch_runtime in runs:
        print(f"|{branch}|{branch_runtime:.1f}s|{100 * branch_runtime / runtime:.2f}%|")


if __name__ == "__main__":
    main()