arc.py 3.55 KB
Newer Older
Jonathan Tow's avatar
Jonathan Tow committed
1
import numpy as np
&'s avatar
& committed
2
3
from lm_eval.base import rf
from ..metrics import mean
4
from . common import HFTask
Leo Gao's avatar
Leo Gao committed
5

Jonathan Tow's avatar
Jonathan Tow committed
6

7
class ARCEasy(HFTask):
Leo Gao's avatar
Leo Gao committed
8
9
    DATASET_PATH = "ai2_arc"
    DATASET_NAME = "ARC-Easy"
Leo Gao's avatar
Leo Gao committed
10

Jonathan Tow's avatar
Jonathan Tow committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    letter_to_num = {'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4}

    def __init__(self):
        super().__init__()
        self.data = self.__clean_data()

    def __clean_data(self):
        """ Resolves various edge cases in the unprocessed HF ARC dataset. """
        # NOTE: Some `doc["answerKey"]`s are in numeric string format being one
        # of {'1', '2', '3', '4', '5'}. We map them back to letters.
        num_to_letter = {'1': 'A', '2': 'B', '3': 'C', '4': 'D', '5': 'E'}
        result = {}
        for split, data in self.data.items():
            result[split] = []
            for doc in data:
                # Ensure all `answerKey`s and `label`s are in letter format.
                doc["answerKey"] = num_to_letter.get(doc["answerKey"], doc["answerKey"])
                doc["choices"]["label"] = [
                    num_to_letter.get(label, label) for label in doc["choices"]["label"]
                ]
                result[split].append(doc)
        return result

Leo Gao's avatar
Leo Gao committed
34
35
36
37
38
39
40
41
42
43
44
45
46
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        # TODO: figure out description
        return ""

47
48
49
50
    def doc_to_text(self, doc):
        return "Question: " + doc['question'] + '\nAnswer:'

    def doc_to_target(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
51
52
        index = self.letter_to_num[doc["answerKey"]]
        return " " + doc['choices']['text'][index]
Leo Gao's avatar
Leo Gao committed
53

Leo Gao's avatar
Leo Gao committed
54
55
56
57
58
59
60
61
62
63
64
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
Jonathan Tow's avatar
Jonathan Tow committed
65
66
67
68
69
        ll_choices = []
        for choice in doc["choices"]["text"]:
            ll_choices.append(rf.loglikelihood(ctx, " " + choice)[0])
        return ll_choices

Leo Gao's avatar
Leo Gao committed
70
71
72
73
74
75
76
77
78
79
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
Jonathan Tow's avatar
Jonathan Tow committed
80
81
82
83
84
        gold = self.letter_to_num[doc["answerKey"]]
        pred = np.argmax(results)
        return {
            "acc": pred == gold
        }
Leo Gao's avatar
Leo Gao committed
85
86
87
88
89
90
91

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
Jonathan Tow's avatar
Jonathan Tow committed
92
93
94
        return {
            "acc": mean
        }
Leo Gao's avatar
Leo Gao committed
95
96
97
98
99
100
101

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
Jonathan Tow's avatar
Jonathan Tow committed
102
103
104
105
        return {
            "acc": True
        }

Leo Gao's avatar
Leo Gao committed
106
107

class ARCChallenge(ARCEasy):
Leo Gao's avatar
Leo Gao committed
108
    DATASET_PATH = "ai2_arc"
Leo Gao's avatar
Leo Gao committed
109
    DATASET_NAME = "ARC-Challenge"