api_models.py 30.8 KB
Newer Older
Baber's avatar
types  
Baber committed
1
2
from __future__ import annotations

Baber Abbasi's avatar
Baber Abbasi committed
3
4
5
6
7
import abc
import asyncio
import copy
import itertools
import json
Lintang Sutawika's avatar
Lintang Sutawika committed
8
import logging
Baber Abbasi's avatar
Baber Abbasi committed
9
10
from functools import cached_property
from typing import (
11
    TYPE_CHECKING,
Baber Abbasi's avatar
Baber Abbasi committed
12
13
14
    Any,
    Callable,
    Literal,
Baber Abbasi's avatar
Baber Abbasi committed
15
    NamedTuple,
Baber Abbasi's avatar
Baber Abbasi committed
16
17
18
19
20
)


try:
    import requests
21
    from aiohttp import ClientSession, ClientTimeout, TCPConnector
Baber Abbasi's avatar
Baber Abbasi committed
22
23
24
25
26
27
28
    from tenacity import RetryError, retry, stop_after_attempt, wait_exponential
    from tqdm import tqdm
    from tqdm.asyncio import tqdm_asyncio
except ModuleNotFoundError:
    pass


29
import base64
Baber Abbasi's avatar
Baber Abbasi committed
30
from importlib.util import find_spec
31
from io import BytesIO
Baber Abbasi's avatar
Baber Abbasi committed
32
33
34
35
36
37

from lm_eval import utils
from lm_eval.api.model import TemplateLM
from lm_eval.models.utils import Collator, chunks, configure_pad_token


38
if TYPE_CHECKING:
Baber's avatar
types  
Baber committed
39
40
    from collections.abc import Awaitable, Iterable

41
42
    from PIL import Image

Baber's avatar
types  
Baber committed
43
44
    from lm_eval.api.instance import Instance

45

Lintang Sutawika's avatar
Lintang Sutawika committed
46
47
eval_logger = logging.getLogger(__name__)

Baber's avatar
types  
Baber committed
48
LogLikelihoodInputs = tuple[tuple[str, str], list[int], list[int]]
Baber Abbasi's avatar
Baber Abbasi committed
49
50
51
52
53
54
55
56
57


# utility class to keep track of json encoded chats
class JsonChatStr(NamedTuple):
    prompt: str

    def encode(self, encoding):
        return self.prompt.encode(encoding)

Baber Abbasi's avatar
Baber Abbasi committed
58

Baber's avatar
types  
Baber committed
59
def create_image_prompt(imgs: list[Image.Image], chat: dict, fmt: str = "PNG") -> dict:
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    """

    Parameters
    ----------
    img : list[PIL.Image.Image]
        The list of images to encode to base64
    chat : dict
    fmt : str, optional
        Any format Pillow understands (e.g. "PNG", "JPEG").
        Defaults to "PNG".

    Returns
    -------
    dict
    """
    images = []
    for img in imgs:
        buf = BytesIO()
        img.save(buf, format=fmt)
        img_b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
        img_dict = {
            "type": "image_url",
            "image_url": {"url": f"data:image/png;base64,{img_b64}", "detail": "auto"},
        }
        images.append(img_dict)

    # chat is in format of list[dict["role": "user"/"system", "content": str, "type": "text"],...]
    # with images, we need "content" to be a list of dicts with "type" and "text"/"image_url"
    # currently we do not support few-shots so only one user message
    # text content also has <image> placeholders, which apparently is not necessary for API class (confirm)

    if isinstance(chat[-1]["content"], list):
        chat[-1]["content"] = images + chat[-1]["content"]
    else:
        text_content = {"type": "text", "text": chat[-1]["content"]}
        chat[-1]["content"] = images + [text_content]
    chat[-1].pop("type")
    return chat


Baber Abbasi's avatar
Baber Abbasi committed
100
class TemplateAPI(TemplateLM):
101
102
    MULTIMODAL = True

Baber Abbasi's avatar
Baber Abbasi committed
103
104
105
106
107
    def __init__(
        self,
        model: str = None,
        pretrained: str = None,  # `model` takes precedence over `pretrained` when passed.
        base_url: str = None,
Baber's avatar
types  
Baber committed
108
        tokenizer: str | None = None,
109
        # Loglikelihood tasks require a tokenizer to calculate context lengths,
Baber Abbasi's avatar
Baber Abbasi committed
110
111
        # however the requests can be sent as a string if the API doesn't support token inputs.
        # use tokenized_requests=False
Baber's avatar
types  
Baber committed
112
113
        tokenizer_backend: Literal["tiktoken", "huggingface", "None", "none"]
        | None = "huggingface",
Baber Abbasi's avatar
Baber Abbasi committed
114
115
116
117
118
        truncate: bool = False,
        # number of concurrent requests. More useful if not batching
        num_concurrent: int = 1,
        max_retries: int = 3,
        max_gen_toks: int = 256,
Baber's avatar
types  
Baber committed
119
        batch_size: str | int = 1,
Baber Abbasi's avatar
Baber Abbasi committed
120
        seed: int = 1234,
Baber's avatar
types  
Baber committed
121
        max_length: int | None = 2048,
Baber Abbasi's avatar
Baber Abbasi committed
122
        add_bos_token: bool = False,
123
        custom_prefix_token_id: int = None,
Baber Abbasi's avatar
Baber Abbasi committed
124
        # send the requests as tokens or strings
125
126
        tokenized_requests: bool = True,
        trust_remote_code: bool = False,
Baber's avatar
types  
Baber committed
127
        revision: str | None = "main",
128
        use_fast_tokenizer: bool = True,
129
        verify_certificate: bool = True,
130
        eos_string: str = None,
131
132
        # timeout in seconds
        timeout: int = 300,
Baber's avatar
types  
Baber committed
133
        header: dict[str, str] | None = None,
134
        max_images: int = 1,
Baber Abbasi's avatar
Baber Abbasi committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        **kwargs,
    ) -> None:
        super().__init__()
        missing_packages = [
            pkg
            for pkg in ["aiohttp", "tqdm", "tenacity", "requests"]
            if find_spec(pkg) is None
        ]
        if missing_packages:
            raise ModuleNotFoundError(
                f"Attempted to use an API model, but the required packages {missing_packages} are not installed. "
                'Please install these via `pip install lm-eval[api]` or `pip install -e ."[api]"`'
            )
        self.model = model or pretrained
        self.base_url = base_url
        self.tokenizer = tokenizer
151
        self._header = header
Baber Abbasi's avatar
Baber Abbasi committed
152
153
154
155
156
157
158
159
160
161
162
163
        if not isinstance(batch_size, int) and "auto" in batch_size:
            eval_logger.warning(
                "Automatic batch size is not supported for API models. Defaulting to batch size 1."
            )
        elif int(batch_size) > 1:
            eval_logger.warning(
                "Batch size > 1 detected. Ensure your API supports batched requests with varying total sequence lengths."
            )
        self._batch_size = int(batch_size) if batch_size != "auto" else 1
        self._truncate = truncate
        self._max_gen_toks = int(max_gen_toks)
        self._seed = int(seed)
Baber Abbasi's avatar
Baber Abbasi committed
164
165
166
        # max_length - 1 as we always have 1 token for generation
        eval_logger.info(f"Using max length {max_length} - 1")
        self.max_length = max_length - 1
Baber Abbasi's avatar
Baber Abbasi committed
167
168
        if int(num_concurrent) <= 1:
            eval_logger.info(
169
                "Concurrent requests are disabled. To enable concurrent requests, set `num_concurrent` > 1."
Baber Abbasi's avatar
Baber Abbasi committed
170
171
            )
        self._concurrent = int(num_concurrent)
172
173
174
        self.tokenizer_backend = (
            None if tokenizer_backend in ("None", "none") else tokenizer_backend
        )
Baber Abbasi's avatar
Baber Abbasi committed
175
176
177
178
        self.add_bos_token = add_bos_token
        self.custom_prefix_token_id = custom_prefix_token_id
        self.tokenized_requests = tokenized_requests
        self.max_retries = int(max_retries)
179
        self.verify_certificate = verify_certificate
180
        self._eos_string = eos_string
181
        self.timeout = int(timeout)
182
        self.max_images = int(max_images)
Baber Abbasi's avatar
Baber Abbasi committed
183
184
185
186
187
188

        eval_logger.info(f"Using tokenizer {self.tokenizer_backend}")
        if self.tokenizer_backend is None:
            self.tokenizer = None
            self.tokenized_requests = False
        else:
Baber Abbasi's avatar
Baber Abbasi committed
189
190
191
192
193
            if self.tokenizer is None:
                if self.tokenizer_backend == "huggingface":
                    import transformers

                    self.tokenizer = transformers.AutoTokenizer.from_pretrained(
194
195
196
197
                        self.tokenizer if self.tokenizer else self.model,
                        trust_remote_code=trust_remote_code,
                        revision=revision,
                        use_fast=use_fast_tokenizer,
Baber Abbasi's avatar
Baber Abbasi committed
198
199
200
201
202
203
204
205
206
                    )
                    # Not used as the API will handle padding but to mirror the behavior of the HFLM
                    self.tokenizer = configure_pad_token(self.tokenizer)
                elif self.tokenizer_backend == "tiktoken":
                    try:
                        import tiktoken

                        self.tokenizer = tiktoken.encoding_for_model(self.model)
                    except ModuleNotFoundError as e:
207
                        raise ModuleNotFoundError(
Baber Abbasi's avatar
Baber Abbasi committed
208
209
210
211
212
213
214
215
216
                            "Attempted to use 'openai' LM type, but the package `tiktoken` is not installed. "
                            "Please install it via `pip install lm-eval[api]` or `pip install -e .[api]`."
                        ) from e
                    if "openai" not in self.base_url:
                        eval_logger.warning(
                            f"Passed `base_url={self.base_url}` but using (OpenAI) Tiktoken tokenizer backend. "
                            "Pass `tokenizer_backend=huggingface` and provide the HF tokenizer name if your model does not use Tiktoken."
                        )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
217
218
                import transformers

Baber Abbasi's avatar
Baber Abbasi committed
219
                assert isinstance(tokenizer, str), "tokenizer must be a string"
Baber Abbasi's avatar
Baber Abbasi committed
220
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
Baber Abbasi's avatar
Baber Abbasi committed
221
                    tokenizer,
222
223
224
                    trust_remote_code=trust_remote_code,
                    revision=revision,
                    use_fast=use_fast_tokenizer,
Baber Abbasi's avatar
Baber Abbasi committed
225
226
227
228
229
                )

    @abc.abstractmethod
    def _create_payload(
        self,
Baber's avatar
types  
Baber committed
230
        messages: list[list[int]] | list[dict] | list[str] | str,
Baber Abbasi's avatar
Baber Abbasi committed
231
232
        *,
        generate: bool = True,
Baber's avatar
types  
Baber committed
233
        gen_kwargs: dict | None = None,
234
        seed: int = 1234,
Baber's avatar
types  
Baber committed
235
        eos: str | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
236
237
238
239
240
241
242
        **kwargs,
    ) -> dict:
        """This method is responsible for creating the json payload that will be sent to the API."""
        raise NotImplementedError

    def create_message(
        self,
Baber's avatar
types  
Baber committed
243
        messages: list[list[int]] | list[str] | list[JsonChatStr],
Baber Abbasi's avatar
Baber Abbasi committed
244
        generate=False,
Baber's avatar
types  
Baber committed
245
    ) -> list[list[int]] | list[dict] | list[str] | str:
Baber Abbasi's avatar
Baber Abbasi committed
246
247
248
        """Helper method to transform the prompt into the expected API input format. messages consist of batched requests"""
        if isinstance(messages[0], JsonChatStr):
            # for chat completions we need to decode the json string to list[dict,...]
Baber Abbasi's avatar
Baber Abbasi committed
249
250
251
            assert self._batch_size == 1, (
                "non-tokenized chat requests are only supported with batch_size=1"
            )
Baber Abbasi's avatar
Baber Abbasi committed
252
253
254
255
256
257
            # list[dict["role":..., "content":...],...]
            return json.loads(messages[0].prompt)

        if not self.tokenized_requests:
            # if messages are tokenized:
            if isinstance(messages[0][0], int):
258
                # assuming decoding is lossless. However, this is only for loglikelihood requests
Baber Abbasi's avatar
Baber Abbasi committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
                # as we need to compute the context length. For generations, we don't need to tokenize.
                messages = self.decode_batch(messages)
            if self._batch_size <= 1:
                # if batch is 1 return str
                return messages[0]
            else:
                # list[str,...]
                return messages

        # list[list[int], ...]
        return messages

    @staticmethod
    @abc.abstractmethod
    def parse_logprobs(
Baber's avatar
types  
Baber committed
274
275
276
        outputs: Any | list[Any],
        tokens: list[list[int]] | None = None,
        ctxlen: list[int] | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
277
        **kwargs,
Baber's avatar
types  
Baber committed
278
    ) -> list[tuple[float, bool]]:
Baber Abbasi's avatar
Baber Abbasi committed
279
280
281
282
283
        """Method used to parse the logprobs from the (batched) API response. This method should return a list of tuples"""
        raise NotImplementedError

    @staticmethod
    @abc.abstractmethod
Baber's avatar
types  
Baber committed
284
    def parse_generations(outputs: Any | list[Any], **kwargs) -> list[str]:
Baber Abbasi's avatar
Baber Abbasi committed
285
286
287
288
289
290
291
292
293
294
295
        """Method used to parse the generations from the (batched) API response. This method should return a list of str"""
        raise NotImplementedError

    @cached_property
    def api_key(self) -> str:
        """Override this property to return the API key for the API request."""
        return ""

    @cached_property
    def header(self) -> dict:
        """Override this property to return the headers for the API request."""
296
        return self._header or {"Authorization": f"Bearer {self.api_key}"}
Baber Abbasi's avatar
Baber Abbasi committed
297
298
299
300

    @property
    def tokenizer_name(self) -> str:
        """Must be defined for LM subclasses which implement Chat Templating.
Baber's avatar
types  
Baber committed
301

Baber Abbasi's avatar
Baber Abbasi committed
302
303
304
305
306
307
        Should return the name of the tokenizer or chat template used.
        Used only to properly fingerprint caches when requests are being cached with `--cache_requests`, otherwise not used.
        """
        return ""

    def apply_chat_template(
Baber's avatar
types  
Baber committed
308
309
        self, chat_history: list[dict[str, str]], add_generation_prompt: bool = True
    ) -> str | JsonChatStr:
Baber Abbasi's avatar
Baber Abbasi committed
310
311
312
        """Applies a chat template to a list of chat history between user and model."""
        if self.tokenizer_backend == "huggingface" and self.tokenized_requests:
            return self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
313
314
315
316
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
Baber Abbasi's avatar
Baber Abbasi committed
317
            )
Baber's avatar
types  
Baber committed
318
319
320
321
322
        # bit of a hack. We'll load back before sending to the API
        return JsonChatStr(
            json.dumps(
                [{**item, "type": "text"} for item in chat_history],
                ensure_ascii=False,
323
            )
Baber's avatar
types  
Baber committed
324
        )
Baber Abbasi's avatar
Baber Abbasi committed
325
326

    @cached_property
Baber's avatar
types  
Baber committed
327
    def eot_token_id(self) -> int | None:
Baber Abbasi's avatar
Baber Abbasi committed
328
329
330
331
332
        if self.tokenizer is None:
            return None
        else:
            if self.tokenizer_backend == "huggingface":
                return self.tokenizer.eos_token_id
Baber's avatar
types  
Baber committed
333
            if self.tokenizer_backend == "tiktoken":
Baber Abbasi's avatar
Baber Abbasi committed
334
335
                return self.tokenizer.eot_token

336
    @cached_property
Baber's avatar
types  
Baber committed
337
    def eos_string(self) -> str | None:
338
339
        if self._eos_string:
            return self._eos_string
Baber's avatar
types  
Baber committed
340
        if self.tokenizer is not None:
341
342
            if self.tokenizer_backend == "huggingface":
                return self.tokenizer.eos_token
Baber's avatar
types  
Baber committed
343
            if self.tokenizer_backend == "tiktoken":
344
345
346
347
348
349
350
                return self.tokenizer.decode([self.tokenizer.eot_token])
        else:
            eval_logger.warning(
                "Cannot determine EOS string to pass to stop sequence. Manually set by passing `eos_string` to model_args."
            )
            return None

Baber Abbasi's avatar
Baber Abbasi committed
351
    @cached_property
Baber's avatar
types  
Baber committed
352
    def prefix_token_id(self) -> int | None:
Baber Abbasi's avatar
Baber Abbasi committed
353
354
355
356
357
358
359
360
361
        if self.tokenizer is None:
            return None
        else:
            if self.custom_prefix_token_id is not None:
                return self.custom_prefix_token_id
            if self.tokenizer_backend == "huggingface":
                if self.tokenizer.bos_token_id is not None:
                    return self.tokenizer.bos_token_id
                return self.tokenizer.eos_token_id
Baber's avatar
types  
Baber committed
362
363

            return self.tokenizer.eot_token
Baber Abbasi's avatar
Baber Abbasi committed
364
365
366
367

    def tok_encode(
        self,
        string: str,
Baber's avatar
types  
Baber committed
368
        left_truncate_len: int | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
369
370
371
        add_special_tokens: bool = False,
        truncation: bool = False,
        **kwargs,
Baber's avatar
types  
Baber committed
372
    ) -> list[list[int]] | list[int] | list[str]:
Baber Abbasi's avatar
Baber Abbasi committed
373
374
        if self.tokenizer_backend is None:
            return [string]
Baber's avatar
types  
Baber committed
375
        if self.tokenizer_backend == "huggingface":
Baber Abbasi's avatar
Baber Abbasi committed
376
377
378
            # by default for CausalLM - false or self.add_bos_token is set
            if not add_special_tokens:
                add_special_tokens = False or self.add_bos_token
Baber's avatar
types  
Baber committed
379
            encoding: list[list[int]] | list[int] = self.tokenizer(
Baber Abbasi's avatar
Baber Abbasi committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
                string,
                add_special_tokens=add_special_tokens,
                truncation=truncation,
                return_attention_mask=False,
            ).input_ids

            # left-truncate the encoded context to be at most `left_truncate_len` tokens long
            if left_truncate_len:
                if not isinstance(string, str):
                    encoding = [enc[-left_truncate_len:] for enc in encoding]
                else:
                    encoding = encoding[-left_truncate_len:]

            return encoding

        else:
            try:
                encoding = self.tokenizer.encode(string)
            except Exception:
                encoding = self.tokenizer.encode_batch(string)
            return encoding

Baber's avatar
types  
Baber committed
402
    def decode_batch(self, tokens: list[list[int]]) -> list[str] | None:
Baber Abbasi's avatar
Baber Abbasi committed
403
404
        if self.tokenizer_backend == "huggingface":
            return self.tokenizer.batch_decode(tokens)
Baber's avatar
types  
Baber committed
405
        if self.tokenizer_backend == "tiktoken":
Baber Abbasi's avatar
Baber Abbasi committed
406
407
408
409
            return self.tokenizer.decode_batch(tokens)

    def model_call(
        self,
Baber's avatar
types  
Baber committed
410
        messages: list[list[int]] | list[str] | list[JsonChatStr],
Baber Abbasi's avatar
Baber Abbasi committed
411
412
        *,
        generate: bool = True,
Baber's avatar
types  
Baber committed
413
        gen_kwargs: dict | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
414
        **kwargs,
Baber's avatar
types  
Baber committed
415
    ) -> dict | None:
Baber Abbasi's avatar
Baber Abbasi committed
416
417
418
419
420
421
422
423
424
        # !!! Copy: shared dict for each request, need new object !!!
        gen_kwargs = copy.deepcopy(gen_kwargs)
        try:
            response = requests.post(
                self.base_url,
                json=self._create_payload(
                    self.create_message(messages),
                    generate=generate,
                    gen_kwargs=gen_kwargs,
425
                    seed=self._seed,
426
                    eos=self.eos_string,
Baber Abbasi's avatar
Baber Abbasi committed
427
428
429
                    **kwargs,
                ),
                headers=self.header,
430
                verify=self.verify_certificate,
Baber Abbasi's avatar
Baber Abbasi committed
431
432
433
434
435
436
437
438
            )
            if not response.ok:
                eval_logger.warning(
                    f"API request failed with error message: {response.text}. Retrying..."
                )
            response.raise_for_status()
            return response.json()
        except RetryError:
Baber's avatar
types  
Baber committed
439
            eval_logger.exception(
Baber Abbasi's avatar
Baber Abbasi committed
440
441
442
443
444
445
446
                "API request failed after multiple retries. Please check the API status."
            )
            return None

    async def amodel_call(
        self,
        session: ClientSession,
447
        sem: asyncio.Semaphore,
Baber's avatar
types  
Baber committed
448
        messages: list[list[int]] | list[str] | list[JsonChatStr],
Baber Abbasi's avatar
Baber Abbasi committed
449
450
        *,
        generate: bool = True,
Baber's avatar
types  
Baber committed
451
452
453
        cache_keys: list | None = None,
        ctxlens: list[int] | None = None,
        gen_kwargs: dict | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
454
        **kwargs,
Baber's avatar
types  
Baber committed
455
    ) -> list[str] | list[tuple[float, bool]] | None:
Baber Abbasi's avatar
Baber Abbasi committed
456
457
458
459
460
461
        # !!! Copy: shared dict for each request, need new object !!!
        gen_kwargs = copy.deepcopy(gen_kwargs)
        payload = self._create_payload(
            self.create_message(messages),
            generate=generate,
            gen_kwargs=gen_kwargs,
462
            seed=self._seed,
Baber Abbasi's avatar
Baber Abbasi committed
463
464
465
            **kwargs,
        )
        cache_method = "generate_until" if generate else "loglikelihood"
466
        acquired = await sem.acquire()
Baber Abbasi's avatar
Baber Abbasi committed
467
468
469
470
471
472
473
474
475
        try:
            async with session.post(
                self.base_url,
                json=payload,
                headers=self.header,
            ) as response:
                if not response.ok:
                    error_text = await response.text()
                    eval_logger.warning(
476
477
                        f"API request failed! Status code: {response.status}, "
                        f"Response text: {error_text}. Retrying..."
Baber Abbasi's avatar
Baber Abbasi committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
                    )
                # raising exception will retry the request
                response.raise_for_status()
                outputs = await response.json()
            answers = (
                self.parse_generations(
                    outputs=outputs,
                )
                if generate
                else self.parse_logprobs(
                    outputs=outputs,
                    tokens=messages,
                    ctxlens=ctxlens,
                )
            )
            if cache_keys:
                for res, cache in zip(answers, cache_keys):
                    self.cache_hook.add_partial(cache_method, cache, res)
            return answers
        # If the retries also fail
498
499
500
501
502
503
        except BaseException as e:
            eval_logger.error(f"Exception:{repr(e)}, {outputs}, retrying.")
            raise e
        finally:
            if acquired:
                sem.release()
Baber Abbasi's avatar
Baber Abbasi committed
504

505
    def batch_loglikelihood_requests(
Baber's avatar
types  
Baber committed
506
507
        self, chunks: Iterable[list[LogLikelihoodInputs]]
    ) -> tuple[list[list[int]], list[int], list[tuple[str, str]]]:
Baber Abbasi's avatar
Baber Abbasi committed
508
509
510
511
512
        inputs = []
        ctxlens = []
        cache_keys = []
        for chunk in chunks:
            for cache_key, context_enc, continuation_enc in chunk:
513
                # max_length - 1 as we always have 1 token for generation
514
515
516
517
518
                inp = (context_enc + continuation_enc)[-self.max_length :]
                if len(inp) < len(context_enc + continuation_enc):
                    eval_logger.warning(
                        f"Context length ({len(context_enc)}) + continuation length ({len(continuation_enc)}) > max_length ({self.max_length}). Left truncating context."
                    )
Baber Abbasi's avatar
Baber Abbasi committed
519
                ctxlen = len(context_enc) - max(
520
                    0, len(context_enc) + len(continuation_enc) - self.max_length
Baber Abbasi's avatar
Baber Abbasi committed
521
522
523
524
525
526
527
528
529
530
531
532
533
                )

                inputs.append(inp)
                ctxlens.append(ctxlen)
                cache_keys.append(cache_key)
        return inputs, ctxlens, cache_keys

    async def get_batched_requests(
        self,
        requests: list,
        cache_keys: list,
        *,
        generate: bool = True,
Baber's avatar
types  
Baber committed
534
        ctxlens: list[int] | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
535
        **kwargs,
Baber's avatar
types  
Baber committed
536
    ) -> list[list[str]] | list[list[tuple[float, bool]]]:
Baber Abbasi's avatar
Baber Abbasi committed
537
        ctxlens = ctxlens if ctxlens else [None] * len(requests)
538
        conn = TCPConnector(limit=self._concurrent, ssl=self.verify_certificate)
539
        sem = asyncio.Semaphore(self._concurrent)
540
541
542
        async with ClientSession(
            connector=conn, timeout=ClientTimeout(total=self.timeout)
        ) as session:
Baber Abbasi's avatar
Baber Abbasi committed
543
544
545
546
            retry_: Callable[..., Awaitable[Any]] = retry(
                stop=stop_after_attempt(self.max_retries),
                wait=wait_exponential(multiplier=0.5, min=1, max=10),
                reraise=True,
547
548
549
                before_sleep=lambda retry_state: eval_logger.info(
                    f"Retry attempt {retry_state.attempt_number}"
                ),
Baber Abbasi's avatar
Baber Abbasi committed
550
551
552
553
554
555
            )(self.amodel_call)
            # Create tasks for each batch of request
            tasks = [
                asyncio.create_task(
                    retry_(
                        session=session,
556
                        sem=sem,
Baber Abbasi's avatar
Baber Abbasi committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
                        messages=message,
                        cache_keys=cache_key,
                        generate=generate,
                        ctxlens=ctxlen,
                        **kwargs,
                    )
                )
                for message, cache_key, ctxlen in zip(
                    chunks(requests, n=self._batch_size),
                    chunks(cache_keys, n=self._batch_size),
                    chunks(ctxlens, n=self._batch_size),
                )
            ]

            return await tqdm_asyncio.gather(*tasks, desc="Requesting API")

Baber's avatar
types  
Baber committed
573
    def _loglikelihood_tokens(self, requests, **kwargs) -> list[tuple[float, bool]]:
Baber Abbasi's avatar
Baber Abbasi committed
574
575
576
        assert self.tokenizer is not None, (
            "Tokenizer is required for loglikelihood tasks to compute context lengths."
        )
Baber Abbasi's avatar
Baber Abbasi committed
577
578
579
        res = []

        def _collate(req: LogLikelihoodInputs):
Baber's avatar
types  
Baber committed
580
            """Defines the key for the sorted method."""
Baber Abbasi's avatar
Baber Abbasi committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = req[1] + req[2]
            return -len(toks), tuple(toks)

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by=None,
        )
        # if concurrent then we'll batch in the async context
        chunked = re_ord.get_batched(n=self._batch_size if self._concurrent <= 1 else 0)
        if self._concurrent <= 1:
            pbar = tqdm(desc="Requesting API", total=len(requests))
            for chunk in chunked:
601
                inputs, ctxlens, cache_keys = self.batch_loglikelihood_requests([chunk])
Baber Abbasi's avatar
Baber Abbasi committed
602
603
604
605
606

                outputs = retry(
                    stop=stop_after_attempt(self.max_retries),
                    wait=wait_exponential(multiplier=0.5, min=1, max=10),
                    reraise=True,
607
                )(self.model_call)(messages=inputs, generate=False)
Baber Abbasi's avatar
Baber Abbasi committed
608
609
610
611
612
613
614
615
616
617
                if isinstance(outputs, dict):
                    outputs = [outputs]
                for answer_, cache_key in zip(
                    self.parse_logprobs(
                        outputs=outputs, tokens=inputs, ctxlens=ctxlens
                    ),
                    cache_keys,
                ):
                    if answer_ is not None:
                        res.append(answer_)
618
                        # cache requests that aren't from a loglikelihood_rolling request
Baber Abbasi's avatar
Baber Abbasi committed
619
620
621
622
623
624
                        if cache_key is not None:
                            self.cache_hook.add_partial(
                                "loglikelihood", cache_key, answer_
                            )
                        pbar.update(1)
        else:
625
            inputs, ctxlens, cache_keys = self.batch_loglikelihood_requests(chunked)
Baber Abbasi's avatar
Baber Abbasi committed
626
627
628
629
630
631
632
633
634
635
636
            res = itertools.chain.from_iterable(
                asyncio.run(
                    self.get_batched_requests(
                        inputs, cache_keys, generate=False, ctxlens=ctxlens
                    )
                )
            )

        return re_ord.get_original(res)

    def generate_until(
Baber's avatar
types  
Baber committed
637
638
        self, requests: list[Instance], disable_tqdm: bool = False
    ) -> list[str]:
Baber Abbasi's avatar
Baber Abbasi committed
639
640
641
642
643
644
645
        res = []

        def _collate_gen(_requests):
            # sort by the length of the non-tokenized contexts
            return -len(_requests[0])

        # Let the API deal with tokenization
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
        if len(requests[0].args) > 2:
            assert self.tokenizer is None, (
                "tokenizer is not supported for multimodal requests yet!"
            )
            eval_logger.info(
                f"Using max_images {self.max_images}. Set in the model args."
            )
            requests, all_gen_kwargs, auxiliary_args = zip(
                *(req.args for req in requests)
            )
            requests = tuple(
                JsonChatStr(
                    json.dumps(
                        create_image_prompt(
                            y["visual"][: self.max_images], json.loads(x.prompt)
                        )
                    )
                )
                for x, y in zip(requests, auxiliary_args)
            )
        else:
            requests, all_gen_kwargs = zip(*(req.args for req in requests))
Baber Abbasi's avatar
Baber Abbasi committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
        if self.tokenized_requests:
            encodings_list = self.tok_encode(
                requests, add_special_tokens=self.add_bos_token
            )
        else:
            encodings_list = [None] * len(requests)
        requests = [
            (a, b, c) for a, b, c in zip(requests, all_gen_kwargs, encodings_list)
        ]

        re_ord = Collator(
            requests,
            sort_fn=_collate_gen,
            group_by="gen_kwargs",
        )
        chunked = re_ord.get_batched(
            n=self._batch_size if self._concurrent <= 1 else 0, batch_fn=None
        )
686
687
688
689
        if not self.tokenized_requests:
            eval_logger.info(
                "Tokenized requests are disabled. Context + generation length is not checked."
            )
Baber Abbasi's avatar
Baber Abbasi committed
690
691
692
693
        if self._concurrent <= 1:
            pbar = tqdm(desc="Requesting API", total=len(requests))
            for chunk in chunked:
                contexts, all_gen_kwargs, encodings_list = zip(*chunk)
694
695
696
697
698
699
700
701
702
703
704
705
706
707
                if self.tokenized_requests:
                    max_gen_toks = all_gen_kwargs[0].get(
                        "max_gen_toks", self._max_gen_toks
                    )
                    max_context_len = self.max_length - max_gen_toks

                    encodings_list = [x[-max_context_len:] for x in encodings_list]

                    if any(
                        len(x) + max_gen_toks > self.max_length for x in encodings_list
                    ):
                        eval_logger.warning(
                            f"Some contexts exceeded (max length: ({self.max_length}) - max_gen_toks: ({max_gen_toks}). They were left truncated."
                        )
708

Baber Abbasi's avatar
Baber Abbasi committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
                req = encodings_list if self.tokenized_requests else contexts
                outputs = retry(
                    stop=stop_after_attempt(self.max_retries),
                    wait=wait_exponential(multiplier=0.5, min=1, max=10),
                    reraise=True,
                )(self.model_call)(
                    messages=req,
                    generate=True,
                    gen_kwargs=copy.deepcopy(all_gen_kwargs[0]),
                )
                for generated_text, context in zip(
                    self.parse_generations(
                        outputs=outputs,
                        contexts=contexts,
                    ),
                    contexts,
                ):
                    if generated_text is not None:
                        res.append(generated_text)

                        # partial caching
                        if context is not None:
                            self.cache_hook.add_partial(
                                "generate_until",
                                (context, all_gen_kwargs[0]),
                                generated_text,
                            )
                            pbar.update(1)
        else:
            for chunk in chunked:
                contexts, all_gen_kwargs, encodings_list = zip(*chunk)
740
741
742
743
744
745
746
747
748
749
750
751
752
753
                if self.tokenized_requests:
                    max_gen_toks = all_gen_kwargs[0].get(
                        "max_gen_toks", self._max_gen_toks
                    )
                    max_context_len = self.max_length - max_gen_toks

                    encodings_list = [x[-max_context_len:] for x in encodings_list]

                    if any(
                        len(x) + max_gen_toks > self.max_length for x in encodings_list
                    ):
                        eval_logger.warning(
                            f"Some contexts exceeded (max length: ({self.max_length}) - max_gen_toks ({max_gen_toks}). They were left truncated."
                        )
754

Baber Abbasi's avatar
Baber Abbasi committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
                req = encodings_list if self.tokenized_requests else contexts
                results = itertools.chain.from_iterable(
                    asyncio.run(
                        self.get_batched_requests(
                            req,
                            cache_keys=[(ctx, all_gen_kwargs[0]) for ctx in contexts],
                            generate=True,
                            gen_kwargs=copy.deepcopy(all_gen_kwargs[0]),
                        )
                    )
                )
                res.extend(results)

        return re_ord.get_original(res)

    def loglikelihood_rolling(
Baber's avatar
types  
Baber committed
771
772
        self, requests: list[Instance], disable_tqdm: bool = False
    ) -> list[float]:
Baber Abbasi's avatar
Baber Abbasi committed
773
774
775
776
777
778
779
780
781
        loglikelihoods = []

        for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.prefix_token_id,
782
783
                        # max_seq_len - (1 for context)
                        max_seq_len=self.max_length - 1,
Baber Abbasi's avatar
Baber Abbasi committed
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
                        context_len=1,
                    ),
                )
            )

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
                disable_tqdm=True,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
802
803
804

            # cache this loglikelihood_rolling request
            self.cache_hook.add_partial("loglikelihood_rolling", (string,), string_nll)
Baber Abbasi's avatar
Baber Abbasi committed
805
        return loglikelihoods