main.py 5 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import os
lintangsutawika's avatar
lintangsutawika committed
2
import re
Jason Phang's avatar
Jason Phang committed
3
import json
4
import fnmatch
lintangsutawika's avatar
lintangsutawika committed
5
import jsonlines
lintangsutawika's avatar
lintangsutawika committed
6
import argparse
FarzanehNakhaee's avatar
FarzanehNakhaee committed
7
import logging
Leo Gao's avatar
Leo Gao committed
8

9
from lm_eval import evaluator, utils
10
from lm_eval.api.registry import ALL_TASKS
lintangsutawika's avatar
lintangsutawika committed
11
from lm_eval.logger import eval_logger
lintangsutawika's avatar
lintangsutawika committed
12
from lm_eval.tasks import include_task_folder
Jason Phang's avatar
lib  
Jason Phang committed
13

14
os.environ["TOKENIZERS_PARALLELISM"] = "false"
15

Fabrizio Milo's avatar
Fabrizio Milo committed
16

Jason Phang's avatar
Jason Phang committed
17
18
def parse_args():
    parser = argparse.ArgumentParser()
Fabrizio Milo's avatar
Fabrizio Milo committed
19
20
    parser.add_argument("--model", required=True)
    parser.add_argument("--model_args", default="")
lintangsutawika's avatar
lintangsutawika committed
21
22
23
    parser.add_argument(
        "--tasks", default=None, choices=utils.MultiChoice(sorted(ALL_TASKS))
    )
24
    parser.add_argument("--config", default=None)
Fabrizio Milo's avatar
Fabrizio Milo committed
25
    parser.add_argument("--num_fewshot", type=int, default=0)
26
    parser.add_argument("--batch_size", type=int, default=1)
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
31
32
    parser.add_argument(
        "--max_batch_size",
        type=int,
        default=None,
        help="Maximal batch size to try with --batch_size auto",
    )
Fabrizio Milo's avatar
Fabrizio Milo committed
33
    parser.add_argument("--device", type=str, default=None)
lintangsutawika's avatar
lintangsutawika committed
34
    parser.add_argument("--include_path", default=None)
Fabrizio Milo's avatar
Fabrizio Milo committed
35
    parser.add_argument("--output_path", default=None)
lintangsutawika's avatar
lintangsutawika committed
36
37
38
39
40
41
42
    parser.add_argument(
        "--limit",
        type=float,
        default=None,
        help="Limit the number of examples per task. "
        "If <1, limit is a percentage of the total number of examples.",
    )
43
    parser.add_argument("--data_sampling", type=float, default=None)
haileyschoelkopf's avatar
haileyschoelkopf committed
44
    parser.add_argument("--use_cache", type=str, default=None)
Fabrizio Milo's avatar
Fabrizio Milo committed
45
46
    parser.add_argument("--decontamination_ngrams_path", default=None)
    parser.add_argument("--check_integrity", action="store_true")
47
    parser.add_argument("--write_out", action="store_true", default=False)
48
    parser.add_argument("--log_samples", action="store_true", default=True)
49
    parser.add_argument("--show_config", action="store_true", default=False)
Jason Phang's avatar
Jason Phang committed
50
51
    return parser.parse_args()

Fabrizio Milo's avatar
Fabrizio Milo committed
52

53
def main():
Jason Phang's avatar
Jason Phang committed
54
    args = parse_args()
Fabrizio Milo's avatar
Fabrizio Milo committed
55

Leo Gao's avatar
Leo Gao committed
56
    if args.limit:
lintangsutawika's avatar
lintangsutawika committed
57
58
59
        eval_logger.warning(
            " --limit SHOULD ONLY BE USED FOR TESTING."
            "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
Fabrizio Milo's avatar
Fabrizio Milo committed
60
        )
Leo Gao's avatar
Leo Gao committed
61

lintangsutawika's avatar
lintangsutawika committed
62
63
64
65
    if args.include_path is not None:
        eval_logger.info(f"Including path: {args.include_path}")
        include_task_folder(args.include_path)

66
    if args.tasks is None:
67
        task_names = ALL_TASKS
Jason Phang's avatar
Jason Phang committed
68
    else:
69
70
        if os.path.isdir(args.tasks):
            import glob
71
72

            task_names = []
73
74
            yaml_path = os.path.join(args.tasks, "*.yaml")
            for yaml_file in glob.glob(yaml_path):
lintangsutawika's avatar
lintangsutawika committed
75
                config = utils.load_yaml_config(yaml_file)
76
77
                task_names.append(config)
        else:
78
            tasks_list = args.tasks.split(",")
79
            task_names = utils.pattern_match(tasks_list, ALL_TASKS)
80
81
            for task in [task for task in tasks_list if task not in task_names]:
                if os.path.isfile(task):
lintangsutawika's avatar
lintangsutawika committed
82
                    config = utils.load_yaml_config(task)
83
                    task_names.append(config)
lintangsutawika's avatar
lintangsutawika committed
84

lintangsutawika's avatar
lintangsutawika committed
85
    eval_logger.info(f"Selected Tasks: {task_names}")
86

87
88
89
90
91
92
    results = evaluator.simple_evaluate(
        model=args.model,
        model_args=args.model_args,
        tasks=task_names,
        num_fewshot=args.num_fewshot,
        batch_size=args.batch_size,
93
        max_batch_size=args.max_batch_size,
94
        device=args.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
95
        use_cache=args.use_cache,
96
97
98
        limit=args.limit,
        decontamination_ngrams_path=args.decontamination_ngrams_path,
        check_integrity=args.check_integrity,
99
        write_out=args.write_out,
100
        log_samples=args.log_samples,
101
    )
102

103
    if results is not None:
104
105
        if args.log_samples:
            samples = results.pop("samples")
106
        dumped = json.dumps(results, indent=2, default=lambda o: str(o))
107
108
        if args.show_config:
            print(dumped)
109

110
111
        batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))

112
        if args.output_path:
113
            os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
lintangsutawika's avatar
lintangsutawika committed
114

115
116
117
            with open(args.output_path, "w") as f:
                f.write(dumped)

118
119
120
121
            if args.log_samples:
                for task_name, config in results["configs"].items():
                    output_name = "{}_{}".format(
                        re.sub("/", "__", args.model_args), task_name
lintangsutawika's avatar
lintangsutawika committed
122
                    )
123
124
125
126
127
128
129
130
131
                    if os.path.isdir(args.output_path):
                        filename = f"./{args.output_path}/{output_name}.jsonl"
                    elif os.path.isfile(args.output_path):
                        filename = (
                            f"./{os.path.dirname(args.output_path)}/{output_name}.jsonl"
                        )

                    with jsonlines.open(filename, "w") as f:
                        f.write_all(samples[task_name])
lintangsutawika's avatar
lintangsutawika committed
132

133
        print(
134
135
            f"{args.model} ({args.model_args}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, "
            f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
136
137
        )
        print(evaluator.make_table(results))
lintangsutawika's avatar
lintangsutawika committed
138
139
        if "aggregate" in results:
            print(evaluator.make_table(results, "aggregate"))
Jason Phang's avatar
lib  
Jason Phang committed
140

141

Jason Phang's avatar
Jason Phang committed
142
if __name__ == "__main__":
Jason Phang's avatar
lib  
Jason Phang committed
143
    main()